Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T20:22:02.967Z Has data issue: false hasContentIssue false

Granulite-facies metamorphism of the Palaeoproterozoic – early Palaeozoic gneiss domains of NE Mozambique, East African Orogen

Published online by Cambridge University Press:  13 April 2016

A. K. ENGVIK*
Affiliation:
Geological Survey of Norway, PO Box 6315 Sluppen, N-7491 Trondheim, Norway
B. BINGEN
Affiliation:
Geological Survey of Norway, PO Box 6315 Sluppen, N-7491 Trondheim, Norway
*
*Author for correspondence: ane.engvik@ngu.no

Abstract

Granulite-facies metamorphism recorded in NE Mozambique is attributed to three main tectonothermal events, covering more than 1400 Ma from Palaeoproterozoic – early Palaeozoic time. (1) Usagaran–Ubendian high-grade metamorphism of Palaeoproterozoic age is documented in the Ponta Messuli Complex by Grt-Sil-Crd-bearing metapelites, estimated to pressure (P) 0.75 ± 0.08 GPa and temperature (T) 765 ± 96°C. The post-peak P-T path is characterized by decompression followed by near-isobaric cooling. (2) Irumidian medium- to high-pressure granulite-facies metamorphism is evident in the Unango and Marrupa complexes of late Mesoproterozoic – early Neoproterozoic age. High-pressure granulite-facies is documented by Grt-Cpx-Pl-Rt-bearing mafic granulites in the northwestern part of the Unango Complex, with peak conditions up to P = 1.5 GPa and T = 850°C. Medium-pressure granulite-facies conditions recording P of c. 1.15 GPa and T of 875°C are documented by Grt-Opx-Cpx-Pl assemblage in mafic granulites and charnockitic gneisses of the central part of the Unango Complex. (3) Tectonothermal activity during the Ediacaran–Cambrian Kuunga Orogeny is recorded in the Mesoproterozoic gneiss complexes as amphibolite facies to medium-pressure granulite-facies metamorphism. Granulite facies are documented by Grt-Opx-Cpx-Pl-bearing mafic granulites and charnockitic gneisses, reporting P = 0.99 ± 13 GPa at T = 738 ± 84°C in the Unango Complex and P = 0.92 ± 18 GPa at T = 841 ± 135°C in the Marrupa Complex. This metamorphism is attributed to crustal thickening related to overriding of the Cabo Delgado Nappe Complex, and shorthening along the Lurio Belt during the early Palaeozoic Kuunga Orogeny.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refererences

Andreoli, M. A. G. & Hart, R. J. 1990. Metasomatized granulites and eclogites of the Mozambique Belt: implications for mantle devolatilization. In Stable Isotopes and Fluid Processes in Mineralization (eds Herbert, H. K. & Ho, S. E.), pp. 121–40. Geology Deptartment and University Extension, University of Western Australia, Perth, Publication 23.Google Scholar
Appel, P., Möller, A. & Schenk, V. 1998. High-pressure granulite facies metamorphism in the Pan-African belt of eastern Tanzania: P-T-t evidence against granulite formation by continent collision. Journal of Metamorphic Geology 16, 491509.Google Scholar
Baldwin, J. A., Powell, R., Brown, M., Moraes, R. & Fuck, R. A. 2005. Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anapolis-Itaucu-Complex, central Brazil. Journal of Metamorphic Geology 23, 511–32.Google Scholar
Baur, N., Kröner, A., Todt, W., Liew, T. C. & Hofmann, A. W. 1991. U-Pb isotopic systematics of zircons from prograde and retrograde transition zones in high-grade orthogneisses, Sri Lanka. Journal of Geology 99, 527–45.Google Scholar
Bingen, B., Jacobs, J., Viola, G., Henderson, I. H. C., Skår, Ø., Boyd, R., Thomas, R. J., Solli, A., Key, R. M. & Daudi, E. X. F. 2009. Geochronology of the Precambrian crust in the Mozambique belt in NE Mozambique, and its implications for Gondwana assembly. Precambrian Research 170, 231–55.Google Scholar
Bjerkgård, T., Stein, H. J., Bingen, B., Henderson, I. H. C., Sandstad, J. S. & Moniz, A. 2009. The Niassa Gold Belt, northern Mozambique – a segment of a continental-scale Pan-African gold-bearing structure. Journal of the African Earth Sciences 53, 4558.Google Scholar
Board, W. S., Frimmel, H. E. & Armstrong, R. A. 2005. Pan-African Tectonism in the Western Maud Belt: P-T-t Path for High-grade Gneisses in the H.U. Sverdrupfjella, East Antarctica. Journal of Petrology 46, 671–99.Google Scholar
Bohlen, S. R. 1991. On the formation of granulites. Journal of Metamorphic Geology 9, 223–30.Google Scholar
Boniface, N., Schenk, V. & Appel, P. 2012. Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry. Precambrian Research 192–95, 1633.Google Scholar
Boyd, R., Nordgulen, Ø., Thomas, R. J., Bingen, B., Bjerkgård, T., Grenne, T., Henderson, I., Melezhik, V. A., Often, M., Sandstad, J. S., Solli, A., Tveten, E., Viola, G., Key, R. M., Smith, R. A., Gonzalez, E., Hollick, L. J., Jacobs, J., Jamal, D., Motuza, G., Bauer, W., Daudi, E., Feito, P., Manhica, V., Moniz, A. & Rosse, D. 2010. The geology and geochemistry of the East African orogen in Northeastern Mozambique. South African Journal of Geology 113, 87129.Google Scholar
Braun, I. & Kriegsman, L. M. 2003. Proterozoic crustal evolution of southernmost India and Sri Lanka. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds Yoshida, M., Windley, B.F. & Dasgupta, S.), pp. 169202. Geological Society of London, Special Publication no. 206.Google Scholar
Brown, M. 2007. Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49, 193234.Google Scholar
Bucher-Nurminen, K. & Ohta, Y. 1993. Granulites and garnet-cordierite gneisses from Dronning Maud Land, Antarctica. Journal of Metamorphic Geology 11, 691703.Google Scholar
Coggon, R. & Holland, T. J. B. 2002. Mixing properties of phengitic micas and revised garnet-phengite termobarometry. Journal of Metamorphic Geology 20, 683–96.Google Scholar
Collins, A. S., Clark, C., Sajeev, K., Santosh, M., Kelsey, D. E. & Hand, M. 2007. Passage through India: the Mozambique Ocean suture, high-pressure granulites and the Palghat-Cauvery shear zone system. Terra Nova 19, 141–7.Google Scholar
Collins, A. S. & Pisarevsky, S. A. 2005. Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens. Earth Science Reviews 71, 229–70.Google Scholar
Collins, A. S., Reddy, S. M., Buchan, C. & Mruma, A. 2004. Temporal constraints on Palaeoproterozoic eclogite formation and exhumation (Usagaran Orogen, Tanzania). Earth and Planetary Science Letters 224, 175–92.Google Scholar
de Capitani, C. & Petrakakis, K. 2010. The computation of equilibrium assemblages diagrams with Theriak/Domino software. American Mineralogist 95, 1006–16.Google Scholar
De Waele, B., Johnson, S. P. & Pisarevsky, S. A. 2008. Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: Its role in the Rodinia puzzle. Precambrian Research 160, 127–41.Google Scholar
De Waele, B., Kampunza, A. B., Mapani, B. S. E. & Tembo, F. 2006. The Mesoproterozoic Irumide belt of Zambia. Journal of African Earth Sciences 46, 3670.Google Scholar
Elvevold, S. & Engvik, A. K. 2013. Pan-African decompressional P-T path recorded by granulites from central Dronning Maud Land, Antarctica. Mineralogy and Petrology 107, 651–64.Google Scholar
Elvevold, S., Thrane, K. & Gilotti, J. A. 2003. Metamorphic history of high-pressure granulites in Payer Land, Greenland Caledonides. Journal of Metamorphic Geology 21, 4963.Google Scholar
Engvik, A. K. & Elvevold, S. 2004. Pan-African extension and near-isothermal exhumation of a granulite facies terrain, Dronning Maud Land, Antarctica. Geological Magazine 141, 649–60.Google Scholar
Engvik, A. K., Tveten, E., Bingen, B., Viola, G., Erambert, M., Feito, P. & de Azavedo, S. 2007. P-T-t evolution and textural evidence for decompression of Pan-African high-pressure granulites, Lurio Belt, northeastern Mozambique. Journal of Metamorphic Geology 25, 935–52.Google Scholar
Fraser, G., McDougall, I., Ellis, D. J. & Williams, I. S. 2000. Timing and rate of isothermal decompression in Pan-African granulites from Rundvågshetta, East Antarctica. Journal of Metamorphic Petrology 18, 441–54.CrossRefGoogle Scholar
Fritz, H., Abdelsalam, M., Ali, K. A., Bingen, B., Collins, A.S., Fowler, A.R., Ghebreab, W., Hauzenberger, C. A., Johnson, P. R., Kusky, T. M., Macey, P., Muhongo, S., Stern, R. J. & Viola, G. 2013. Orogen styles in the East African orogen: a review of the Neopreoterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences 86, 65106.Google Scholar
Fritz, H., Tenczer, V., Hauzenberger, C. A., Wallbrecher, E., Hoinkes, G., Muhongo, S. & Mogessie, A. 2005. Central Tanzanian tectonic map: a step forward to decipher Proterozoic structural events in the East African Orogen. Tectonics 24, TC6013.Google Scholar
Grantham, G. H., Jackson, C., Moyes, A. B., Groenewald, P. D., Harris, P. D., Ferrar, G. & Krynauw, J. R. 1995. The tectonothermal evolution of Kirwanveggan-H.U. Sverdrupfjella areas, Dronning Maud Land, Antarctica. Precambrian Research 75, 209–30.Google Scholar
Grantham, G. H., Maboko, M. & Eglington, B. M. 2003. A review of the evolution of the Mozambique Belt and implications for the amalgamation and dispersal of Rodinia and Gondwana. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds Yoshida, M., Windley, B. F. & Dasgupta, S.), pp. 401–25. Geological Society of London, Special Publication no. 206.Google Scholar
Green, E. C. R., Holland, T. J. B. & Powell, R. 2007. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogite rocks. American Mineralogist 92, 1181–9.Google Scholar
Green, D. H. & Ringwood, A. E. 1967. An experimental investigation of the gabbro to eclogite transformation and its petrological application. Geochimica et Cosmochemicia Acta 31, 767833.Google Scholar
Hansen, B. 1981. The transition from pyroxene granulite facies to garnet clinopyroxene granulite facies: experiments in the system CaO-MgO-Al2O3-SiO2 . Contributions to Mineralogy and Petrology 76, 234–42.Google Scholar
Hanson, R. E., Wardlaw, M. S., Wilson, T. J. & Mwale, G. 1993. U-Pb zircon ages from the Hook granite massif and Mwembeshi dislocation: constraints on Pan-African deformation, plutonism, and transcurrent shearing in central Zambia. Precambrian Research 63, 189209.Google Scholar
Harley, S. L. 1989. The origin of granulites: a metamorphic prospective. Geological Magazine 126, 215–47.Google Scholar
Harley, S. L. 2003. Archaean-Cambrian crustal development in East Antarctica: metamorphic characteristics and tectonic implications. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds Yoshida, M., Windley, B. F. & Dasgupta, S.), pp. 203–30. Geological Society of London, Special Publication no. 206.Google Scholar
Hauzenberger, C. A., Sommer, H., Fritz, H., Bauerhofer, A., Kröner, A., Hoinkes, G., Wallbrecher, E. & Thöni, M. 2007. SHRIMP U-Pb and Sm-Nd garnet ages from the granulite-facies basement of SE Kenya: evidence for Neoproterozoic polycyclic assembly of the Mozambique Belt. Journal of the Geological Society, London 164, 189201.CrossRefGoogle Scholar
Holdaway, M. J. & Lee, S.M. 1977. Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations. Contributions to Mineralogy and Petrology 63, 175–98.Google Scholar
Holland, T. J. B. & Powell, R. 1996. Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions. American Mineralogist 81, 1425–37.Google Scholar
Holland, T. J. B. & Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309–43.Google Scholar
Holmes, A. 1951. The sequence of Pre-Cambrian orogenic belts in South and Central Africa. In Proceedings of the 18th International Geological Congress (eds Sandford, K. S. & Blondel, F.), pp. 254–69. London: Association des Services Géologiques Africains.Google Scholar
Ito, K. & Kennedy, G. C. 1971. An experimental study of the basalt-garnet granulite-eclogite transition. In The Structure and Physical Properties of the Earth's Crust (ed. Heacock, J. G.), pp. 303–14. American Geophysical Union, Washington DC, Monograph no. 14.Google Scholar
Jacobs, J., Bingen, B., Thomas, R. J., Bauer, W., Wingate, M. & Feitio, P. 2008. Early Palaeozoic orogenic collapse and voluminous late-tectonic magmatism in Dronning Maud Land and Mozambique: insights into the partially delaminated orogenic root of the East African–Antarctic Orogen? In Geodynamic Evolution of East Antarctica: A Key to the East-West Gondwana Connection (eds Satish-Kumar, M., Motoyoshi, Y., Osanai, Y., Hiroi, Y. & Shiraishi, K.) pp. 6990. Geological Society, London, Special Publication no. 308.Google Scholar
Jacobs, J., Fanning, C. M., Henjes-Kunst, F., Olesch, M. & Paech, H. J. 1998. Continuation of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphase Pan-African high-grade events in Central Dronning Maud Land. Journal of Geology 106, 385406.CrossRefGoogle Scholar
Jacobs, J. & Thomas, R. J. 2004. Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic-early Paleozoic East-African-Antarctic Orogen. Geology 32, 721–4.Google Scholar
Jiang, J. & Lasaga, A. C. 1990. The effect of post-growth thermal events on growth-zoned garnet: implications for metamorphic P-T history calculations. Contributions to Mineralogy and Petrology 105, 454–9.Google Scholar
Johannes, W. & Holtz, F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Heidelberg: Springer-Verlag.Google Scholar
Johnson, P. R., Andresen, A., Collins, A. S., Fowler, A. R., Fritz, H., Ghebreab, W., Kusky, T. & Stern, R. J. 2011. Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences 61, 167232.Google Scholar
Johnson, S. P., De Waele, B. & Liyungu, K. A. 2006. U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon geochronology of granitoid rocks in eastern Zambia: terrane subdivision of the Mesoproterozoic Southern Irumide Belt. Tectonics 25, TC6004, doi: 10.1029/2006TC001977.Google Scholar
Johnson, S. P., De Waele, B., Tembo, F., Katongo, C., Tani, K., Chang, Q., Iizuka, T. & Dunkley, D. 2007. Geochemistry, geochronology and isotopic evolution of the Chewore-Rufunsa Terrane, Southern Irumide Belt: a Mesoproterozoic continental margin arc. Journal of Petrology 48, 1411–41.Google Scholar
Johnson, S. P., Rivers, T. & De Waele, B. 2005. A review of the Mesoproterozoic to early Palaeozoic magmatic and tectonothermal history of south-central Africa: implications for Rodinia and Gondwana. Journal of the Geological Society, London 161, 433–50.Google Scholar
Jöns, N., Schenk, V., Appel, P. & Razakamanana, T. 2006. Two-stage metamorphic evolution of the Bemarivo Belt of northern Madagascar: constraints from reaction textures and in situ monazite dating. Journal of Metamorphic Geology 24, 329–47.Google Scholar
Kelsey, D. E., Wade, B. P., Collins, A. S., Hand, M., Sealing, C. R. & Netting, A. 2008. A Neoproterozoic basin precursor to UHT metamorphism in the Prydz Bay belt in east Antarctica. Precambrian Research 161, 355–88.Google Scholar
Kröner, A., Sacchi, R., Jaeckel, P. & Costa, M. 1997. Kibaran magmatism and Pan-African granulite metamorphism in northern Mozambique: single zircon ages and regional implications. Journal of African Earth Sciences 25, 467–84.Google Scholar
Kröner, A., Willner, A. P., Hegner, E., Jaeckel, P. & Nemchin, A. A. 2001. Single zircon ages, PT evolution and Nd isotopic systematics of high-grade gneisses in southern Malawi and their bearing on the evolution of the Mozambique belt in southeastern Africa. Precambrian Research 109, 257–91.Google Scholar
Le Breton, N. & Thompson, A. B. 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology 99, 226–37.CrossRefGoogle Scholar
Lenoir, J.-L., Liégeois, J.-P., Theunissen, K. & Klerkx, J. 1994. The Palaeoproterozoic Ubendian shear belt in Tanzania: geochronology and structure. Journal of African Earth Sciences 19, 169–84.Google Scholar
Macey, P. H., Thomas, R. J., Grantham, G. H., Ingram, B. A., Jacobs, J., Armstrong, R. A., Roberts, M. P., Bingen, B., Hollick, L. M., deKock, G. S., Viola, G., Bauer, W., Gonzales, E., Bjerkgård, T., Henderson, I. H. C., Sandstad, J. S., Cronwright, M. S., Harley, S., Solli, A., Nordgulen, Ø., Motuza, G., Daudi, E. X. F. & Manhiça, V. 2010. Mesoproterozoic geology of the Nampula Block, northern Mozambique: Tracing fragments of Mesoproterozoic crust in the heart of Gondwana. Precambrian Research 182, 124–48.Google Scholar
Mänttäri, I. 2008. Mesoarchaean to Lower Jurassic U-Pb and Sm-Nd ages from NW Mozambique. In GTK Consortium Geological Surveys in Mozambique 2002–2007 (eds Pekkala, Y., Lehto, T. & Mäkitie, T.), pp. 81119. Geological Survey of Finland, Special Paper no. 48.Google Scholar
Markl, G., Bäuerle, J. & Grujic, D. 2000. Metamorphic evolution of Pan-African granulite facies metapelites from Southern Madagascar. Precambrian Research 102, 4768.Google Scholar
Meert, J. G. 2003. A synopsis of events related to the assembly of Gondwana. Tectonophysics 362, 140.Google Scholar
Melezhik, V. A., Bingen, B., Fallick, A. E., Gorokhov, I. M., Kuznetsov, A. B., Sandstad, J. S., Solli, A., Bjerkgård, T., Henderson, I. H. C., Boyd, R., Jamal, D. & Moniz, A. 2008. Isotope chemostratigraphy of marbles in northeastern Mozambique: apparent depositional ages and tectonostratigraphic implications. Precambrian Research 162, 540–58.Google Scholar
Melezhik, V. A., Kuznetsov, A. B., Fallick, A. F., Smith, R. A., Gorokhov, I. M., Jamal, D. & Catuane, F. 2006. Depositional environments and an apparent age for the Geci meta-limestones: Constraints on the geological history of northern Mozambique. Precambrian Research 148, 1931.Google Scholar
Möller, A., Appel, P., Mezger, K. & Schenk, V. 1995. Evidence for a 2 Ga subduction zone: eclogites in the Usagaran belt of Tanzania. Geology 23, 1067–70.Google Scholar
Möller, A., Mezger, K. & Schenk, V. 2000. U-Pb dating of metamorphic minerals: Pan-African metamorphism and prolonged slow cooling of high pressure granulites in Tanzania, East Africa. Precambrian Research 104, 123–46.Google Scholar
Muhongo, S., Kröner, A. & Nemchin, A. A. 2001. Single zircon evaporation and SHRIMP ages for granulite-facies rocks in the Mozambique Belt of Tanzania. Journal of Geology 109, 171–89.Google Scholar
Newton, R. C., Charlu, T. V. & Kleppa, O. J. 1980. Thermochemistry of the high structural state plagioclases. Geochemica Cosmochimica Acta 44, 933–41.Google Scholar
Consortium, Norconsult 2007. Mineral resources management capacity building project, Republic of Mozambique; Component 2: Geological infrastructure development project, Geological Mapping Lot 1; Sheet explanation: 32 sheets; scale: 1/250000, 778 pp. + annexes. Credit No. NDF335, Report No. B6f, National Directorate of Geology, Republic of Mozambique.Google Scholar
O'Brien, P. J. & Rötzler, J. 2003. High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. Journal of Metamorphic Geology 21, 1320.Google Scholar
Pattison, D. R. M. 2003. Petrogenetic significance of orthopyroxene-free garnet + clinopyroxene + plagioclase ± quartz-bearing metabasites with respect to the amphibolite and granulite facies. Journal of Metamorphic Geology 21, 2135.Google Scholar
Piazolo, S. & Markl, G. 1999. Humite- and scapolite-bearing assemblages in marble and calcsilicates of Dronning Maud Land, Antarctica: new data for Gondwana reconstructions. Journal of Metamorphic Geology 17, 91107.Google Scholar
Pinna, P., Jourde, G., Calvez, J. Y., Mroz, J. P. & Marques, J. M. 1993. The Mozambique Belt in northern Mozambique; Neoproterozoic (1100–850 Ma) crustal growth and tectogenesis, and superimposed Pan-African (800–550 Ma) tectonism. Precambrian Research 62, 159.Google Scholar
Pouchou, J. P. & Pichoir, F. 1984. Cameca PAP program. La Recherche Aerospatiale 3, 167–92.Google Scholar
Powell, R. & Holland, T. J. B. 1988. An internally consistent dataset with uncertainties and correlations; 3, Applications to geobarometry, worked examples and computer program. Journal of Metamorphic Geology 6, 173204.Google Scholar
Prakash, D. & Sharma, I. N. 2011. Metamorphic evolution of the Karimnagar granulite terrane, Eastern Dharwar Craton, south India. Geological Magazine 148, 112–32.Google Scholar
Ring, U., Kröner, A. & Toulkeridis, T. 1997. Palaeoproterozoic granulite-facies metamorphism and granitoid intrusions in the Ubendian-Usagaran Orogen of northern Malawi, east-central Africa. Precambrian Research 85, 2751.Google Scholar
Reddy, S. M., Collins, A. S. & Mruma, A. 2003. Complex high-strain deformation in the Usagaran Orogen Tanzania: structural setting of Palaeoproterozoic eclogites. Tectonophysics 375, 101–23.Google Scholar
Singh, Y. K., De Waele, B., Karmakar, S., Sarkar, S. & Biswal, T. K. 2010. Tectonic setting of the Balaram-Kui-Surpagla-Kengora granulite of the South Delhi Terrane of the Aravalli Mobile Belt, NW India and its implication on correlation with the East African Orogen in the Gondwana Assembly. Precambrian Research 183, 669–88.Google Scholar
Sommer, H. & Kröner, A. 2013. Ultra-high temperature granulite-facies metamorphic rocks from the Mozambique belt of SW Tanzania. Lithos 170–71, 117–43.Google Scholar
Sommer, H., Kröner, A., Hauzenberger, C. & Muhongo, S. 2005. Reworking of Archaean and Palaeoproterozoic crust in the Mozambique belt of central Tanzania as documented by SHRIMP zircon geochronology. Journal of African Earth Sciences 43, 447–63.Google Scholar
Sommer, H., Kröner, A., Hauzenberger, C., Muhongo, S. & Wingate, M. T. D. 2003. Metamorphic petrology and zircon geochronology of high-grade rocks from the central Mozambique Belt of Tanzania: crustal recycling of Archean and Palaeoproterozoic material during the Pan-African orogeny. Journal of Metamorphic Geology 21, 915–34.Google Scholar
Spear, F. S. 1993. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America, Monograph, Washington DC.Google Scholar
Spear, F. S. & Cheney, J. T. 1989. A petrogenetic grid for pelitic schists in the system SiO2-Al2O3-FeO-MgO-H2O. Contributions to Mineralogy and Petrology 101, 149–64.CrossRefGoogle Scholar
Spear, F. S. & Florence, F. P. 1992. Thermobarometry in granulites: pitfalls and new approaches. Journal of Precambrian Research 55, 209–41.Google Scholar
Stern, R. J. 1994. Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwana. Earth Planetary Science Review 22, 319–51.Google Scholar
Tenczer, V., Hauzenberger, C. A., Fritz, H., Whitehouse, M. J., Mogessie, A., Wallbrecher, E., Muhongo, S. & Hoinkes, G. 2006. Anorthosites in the Eastern Granulites of Tanzania – new SIMS zircon U-Pb age data, petrography and geochemistry. Precambrian Research 148, 85114.Google Scholar
Thomas, R. J., Jacobs, J., Horstwood, M. S. A., Ueda, K., Bingen, B. & Matola, R. 2010. The Mecubúri and Alto Benfica Groups, NE Mozambique: Aids to unravelling ca. 1 and 0.5 Ga events in the East African Orogen. Precambrian Research 178, 7290.Google Scholar
Thost, D. E., Hensen, B. J. & Motoyoshi, Y. 1994. The geology of a rapidly uplifted medium and low pressure granulite facies terrane of Pan-African age: the Bolingen Islands, Prydz Bay, Eastern Antarctica. Petrology 2, 293316.Google Scholar
Ueda, K., Jacobs, J., Thomas, R. J., Kosler, J., Horstwood, M. S. A., Wartho, J.-A., Jourdan, F., Emmel, B. & Matola, R. 2012 a. Postcollisional high-grade metamorphism, orogenic collapse, and differential cooling of the East African Orogen of Northeast Mozambique. Journal of Geology 120, 507–30.CrossRefGoogle Scholar
Ueda, K., Jacobs, J., Thomas, R. J., Kosler, J., Jourdan, F. & Matola, R. 2012 b. Delamination-induced late-tectonic deformation and high-grade metamorphism of the Proterozoic Nampula Complex, northern Mozambique. Precambrian Research 196–97, 275–94.Google Scholar
Unrug, R. 1997. Rodinia to Gondwana: the geodynamic map of Gondwana supercontinent assembly. GSA Today 7, 16.Google Scholar
Viola, G., Henderson, I. H. C., Bingen, B., Thomas, R. J., Smethurst, M. A. & de Azavedo, S. 2008. Growth and collapse of a deeply eroded orogen: Insights from structural, geophysical, and geochronological constraints on the Pan-African evolution of NE Mozambique. Tectonics 27 (5), doi: 10.1029/2008TC002284.Google Scholar
Vogt, M., Kröner, A., Poller, U., Sommer, H., Muhongo, S. & Wingate, M. T. D. 2006. Archean and Palaeproterozoic gneisses reworked during a Neoproterozoic (Pan-African) high-grade event in the Mozambique belt of East Africa: Structural relationships and zircon ages from the Kidatu area, central Tanzania. Journal of African Earth Sciences 45, 139–55.Google Scholar
Vrána, S., Kachlík, V., Kröner, A., Marheine, D., Seifert, A. V., Žáček, V. & Babůrek, J. 2004. Ubendian basement and its late Mesoproterozoic and early Neoproterozoic structural and metamorphic overprint in northeastern Zambia. Journal of African Earth Sciences 38, 121.Google Scholar
White, R. W., Powell, R. & Holland, T. J. B. 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology 25, 511–27.Google Scholar
Whitney, D. L. & Evans, B. W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–7.Google Scholar