Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T12:33:59.153Z Has data issue: false hasContentIssue false

Investigations of Mesoscopic Ferroelectric Structures Prepared by Imprint Lithography

Published online by Cambridge University Press:  11 February 2011

C. Harnagea
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany
M. Alexe
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany
J. Schilling
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany
R. B. Wehrspohn
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany
U. Gösele
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, D-06120 Halle (Saale), Germany
Get access

Abstract

Arrays of mesoscopic ferroelectric PZT structures with lateral sizes from several micrometers down to below 300 nm were prepared applying nanoimprint lithography. The ferroelectric properties of the mesoscopic structures were investigated by scanning force microscopy in piezoresponse mode. The best chemical route to obtain ferroelectric structures was found to be the sol-gel method. Using Nb-doped SrTiO3 single crystals as bottom electrodes, the crystallization into the ferroelectric phase was uniform with grain sizes in the 35 nm range. The best ferroelectric properties of individual 300 nm structures were obtained if an intermediate, continuous ferroelectric layer was present on the bottom electrode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alexe, M., Harnagea, C., Hesse, D., and Gösele, U., Appl. Phys. Lett. 75, 1793 (1999).Google Scholar
2. Chou, S.Y., Krauss, P.R., and Renstrom, P.J., Appl. Phys. Lett. 67, 3114 (1995).Google Scholar
3. Chou, S.Y., Krauss, P.R., and Renstrom, P.J., J. Vac. Sci. Technol. B 14, 4129 (1996)Google Scholar
4. Chou, S.Y., Krauss, P.R., and Renstrom, P.J., Science 272, 84 (1996).Google Scholar
5. Wehrspohn, R. B. and Schilling, J., MRS Bull. 26, 623 (2001).Google Scholar
6. Auciello, O., Gruverman, A., Tokumoto, H., Prakash, S.A., Aggarval, S., and Ramesh, R., MRS Bull. 23, 33 (1998).Google Scholar
7. Harnagea, C., Pignolet, A., Alexe, M., Hesse, D., and Gösele, U., Appl. Phys. A 70, 261 (2000).Google Scholar
8. Using tip deconvolution software we find the upper limit of the tip radius around 150 nm.Google Scholar
9. Alexe, M., Harnagea, C., Hesse, D., and Gösele, U., Appl. Phys. Lett. 79, 242 (2001).Google Scholar
10. Kalinin, S. V. and Bonnell, D. A., Phys. Rev. B 65, 125408 (2002).Google Scholar