Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T14:13:17.243Z Has data issue: false hasContentIssue false

Piezoresistive Cantilever Optimization and Applications

Published online by Cambridge University Press:  31 January 2011

Joseph C. Doll
Affiliation:
jcdoll@stanford.edu, Stanford University, Mechanical Engineering, Stanford, California, United States
Sung-Jin Park
Affiliation:
sjinpark@stanford.edu, Stanford University, Mechanical Engineering, Stanford, California, United States
Nahid Harjee
Affiliation:
nharjee@stanford.edu, Stanford University, Electrical Engineering, Stanford, California, United States
Ali J. Rastegar
Affiliation:
alir1@stanford.edu, Stanford University, Mechanical Engineering, Stanford, California, United States
Joseph R. Mallon
Affiliation:
joe@joemallon.com, Stanford University, Mechanical Engineering, Stanford, California, United States
Bryan C. Petzold
Affiliation:
petzold@stanford.edu, Stanford University, Mechanical Engineering, Stanford, California, United States
Ginel C. Hill
Affiliation:
ginel@stanford.edu, Stanford University, Mechanical Engineering, Stanford, California, United States
A. Alvin Barlian
Affiliation:
alvin.barlian@gmail.com, Halcyon Molecular, Los Altos, California, United States
Beth Pruitt
Affiliation:
pruitt@stanford.edu, Stanford University, Mechanical Engineering, Stanford, California, United States
Get access

Abstract

Piezoresistors are commonly used in microsystems for transducing force, displacement, pressure and acceleration. Silicon piezoresistors can be fabricated using ion implantation, diffusion or epitaxy and are widely used for their low cost and electronic readout. However, the design of piezoresistive cantilevers is complicated by coupling between design parameters as well as fabrication and application constraints. Here we discuss analytical models and design optimization for piezoresistive cantilevers, and describe several applications ranging from studying electron movement using scanning gate microscopy to measuring the biomechanics of whole organisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Barlian, A. Park, W.T. Mallon, J. Rastegar, A. Pruitt, B. Review: Semiconductor piezoresistance for microsystems, Proceedings of the IEEE 97(3), 513 (2009)Google Scholar
2 Hansen, O. Boisen, A. Noise in piezoresistive atomic force microscopy, Nanotechnology 10, 51 (1999)Google Scholar
3 Harley, J. Kenny, T. 1/f noise considerations for the design and process optimization of piezoresistive cantilevers, Microelectromechanical Systems (2000)Google Scholar
4 Yu, X. Thaysen, J. Hansen, O. Boisen, A. Optimization of sensitivity and noise in piezoresistive cantilevers, Journal of Applied Physics (2002)Google Scholar
5 Merlos, A. Santander, J. Alvarez, M. Campabadal, F. Optimized technology for the fabrication of piezoresistive pressure sensors, Journal Of Micromechanics And Microengineering 10, 204 (2000)Google Scholar
6 Bae, B. Flachsbart, B. Park, K. Shannon, M. Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio, Journal Of Micromechanics And Microengineering 14, 1597 (2004)Google Scholar
7 Pramanik, C. Saha, H. Gangopadhyay, U. Design optimization of a high performance silicon mems piezoresistive pressure sensor for biomedical applications, Journal Of Micromechanics And Microengineering 16, 2060 (2006)Google Scholar
8 Wang, Z., Xu, Y. Design and optimization of an ultra-sensitive piezoresistive accelerometer for continuous respiratory sound monitoring, Sensor Letters 5, 450 (2007)Google Scholar
9 Villanueva, G. Plaza, J. Montserrat, J. Perezmurano, F. Bausells, J. Crystalline silicon cantilevers for piezoresistive detection of biomolecular forces, Microelectronic Engineering p. 4 (2008)Google Scholar
10 Park, S.J. Goodman, M.B. Pruitt, B.L. Analysis of nematode mechanics by piezoresistive displacement clamp, Proceedings of the National Academy of Sciences 104(44), 17376 (2007)Google Scholar
11 Binnig, G. Quate, C. Gerber, C. Atomic force microscope, Physical Review Letters (1986)Google Scholar
12 Goericke, F. King, W. Modeling piezoresistive microcantilever sensor response to surface stress for biochemical sensors, Sensors Journal (2008)Google Scholar
13 Tortonese, M. Barrett, R. Quate, C. Atomic resolution with an atomic force microscope using piezoresistive detection, Applied Physics Letters (1993)Google Scholar
14 Minne, S.C. Adams, J.D. Yaralioglu, G. Manalis, S.R. Atalar, A. Quate, C.F. Centimeter scale atomic force microscope imaging and lithography, Applied Physics Letters (1998)Google Scholar
15 Ried, R. Mamin, H. Terris, B. Fan, L. Rugar, D. 5 mhz, 2 n/m piezoresistive cantilevers with incisive tips, Solid State Sensors and Actuators (1997)Google Scholar
16 Hagleitner, C. Hierlemann, A. Lange, D. Kummer, A. Kerness, N. Brand, O. Baltes, H. Smart single-chip gas sensor microsystem, Nature 414 (6861), 293 (2001)Google Scholar
17 Doll, J.C. Park, S.J. Pruitt, B.L. Design optimization of piezoresistive cantilevers for force sensing in air and water, Journal of Applied Physics 106(6), 064310 (2009)Google Scholar
18 Park, S.J. Doll, J.C. Rastegar, A.L. Pruitt, B.L. Piezoresistive cantilever performance – part ii: Optimization, Journal of Microelectromechanical Systems (2009)Google Scholar
19 Harley, J. Kenny, T. High-sensitivity piezoresistive cantilevers under 1000 angstroms thick, Appl. Phys. Lett (1999)Google Scholar
20 Richter, J. Pedersen, J. Brandbyge, M. Thomsen, E.V. Hansen, O. Piezoresistance in p-type silicon revisited, Journal of Applied Physics 104(2), 023715 (2008)Google Scholar
21 Mallon, J.R. Rastegar, A.J. Barlian, A.A. Meyer, M.T. Fung, T.H. Pruitt, B.L. Low 1/f noise, full bridge, microcantilever with longitudinal and transverse piezoresistors, Applied Physics Letters 92, 3508 (2008)Google Scholar
22 Doll, J. Petzold, B. Ghale, P. Goodman, M. Pruitt, B. High frequency force sensing with piezoresistive cantilevers pp. 19281931 (2009)Google Scholar
23 Tortonese, M. Force sensors for scanning probe microcopy, Ph.D. dissertation Dept. Appl. Phys., Stanford University (1993)Google Scholar
24 Park, S.J. Doll, J.C. Pruitt, B.L. Piezoresistive cantilever performance – part i: Analytical model for sensitivity, Journal of Microelectromechanical Systems (2009)Google Scholar
25 Park, S.J. Petzold, B. Goodman, M. Pruitt, B. Piezoresistive cantilever-based force-clamp system for the study of mechanotransduction in c. elegans Proceedings of MEMS 2009 pp. 188191 (2009)Google Scholar
26 Senturia, S.D. Microsystem design (2000)Google Scholar
27 Masetti, G. Severi, M. Solmi, S. Modeling of carrier mobility against carrier concentration in arsenic, phosphorus, and boron-doped…, Electron Devices (1983)Google Scholar
28 Hooge, F. 1/f noise sources, Electron Devices (1994)Google Scholar
29 Petzold, B.C. Park, S.J. Ponce, P. Goodman, M.B. Pruitt, B.L. The contribution of body wall muscles to c. elegans body mechanics determined using piezoresistive microcantilevers, Proceedings of microTAS 2009 pp. 13061308 (2009)Google Scholar
30 Chui, B.W. Kenny, T.W. Mamin, H.J. Terris, B.D. Rugar, D. Independent detection of vertical and lateral forces with a sidewall-implanted dual-axis piezoresistive cantilever, Applied Physics Letters 72(11), 1388 (1998)Google Scholar
31 Partridge, A. Reynolds, J. Chui, B. Chow, E. Fitzgerald, A. Zhang, L. Maluf, N. Kenny, T. A high-performance planar piezoresistive accelerometer, Microelectromechanical Systems, Journal of 9(1), 58 (2000)Google Scholar
32 Barlian, A.A. Park, S.J. Mukundan, V. Pruitt, B.L. Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors, Sensors and Actuators A: Physical 134(1), 77 (2007)Google Scholar
33 Barlian, A. Harjee, N. Mukundan, V. Fung, T. Park, S.J. Pruitt, B. Sidewall epitaxial piezoresistor process for in-plane sensing applications, Micro Electro Mechanical Systems (2008)Google Scholar
34 Hill, G. Soto, D. Lue, S. Peattie, A. Full, R. Kenny, T. Investigating the role of orientation angle on gecko setae adhesion using a dual-axis mems force sensor, Proceedings of Transducers 2007 pp. 2263-2266 (2007)Google Scholar
35 Harjee, N. Garcia, A. Knig, M. Doll, J. Goldhaber-Gordon, D., Pruitt, B. Coaxial tip piezoresistive scanning probes for high-resolution electrical imaging, Proceedings of MEMS 2010 (2010)Google Scholar
36 Topinka, M. LeRoy, B. Shaw, S. Heller, E. Westervelt, R., Maranowski, K. Gossard, A. Imaging coherent electron flow from a quantum point contact, Science 289 (5488), 2323 (2000)Google Scholar
37 Wu, G. Ji, H. Hansen, K. Thundat, T. Datar, R. Cote, R. Hagan, M.F. Chakraborty, A.K. Majumdar, A. Origin of nanomechanical cantilever motion generated from biomolecular interactions, Proceedings of the National Academy of Sciences 98(4), 1560 (2001)Google Scholar
38 Mukhopadhyay, R. Lorentzen, M. Kjems, J. Besenbacher, F. Nanomechanical sensing of dna sequences using piezoresistive cantilevers, Langmuir 21(18), 8400 (2005)Google Scholar
39 Trinh, Q.T. Gerlach, G. Sorber, J. Arndt, K.F. Hydrogel-based piezoresistive ph sensors: Design, simulation and output characteristics, Sensors and Actuators B: Chemical 117(1), 17 (2006)Google Scholar
40 Goericke, F. King, W. Modeling piezoresistive microcantilever sensor response to surface stress for biochemical sensors, Sensors Journal, IEEE 8(8), 1404 (2008)Google Scholar