Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T05:18:27.928Z Has data issue: false hasContentIssue false

Syntone chemistry and prebiotic stage in life evolution 1. Aziridinone, a key compound in formation of the first proteinogenic amino acids and polypeptides

Published online by Cambridge University Press:  31 August 2017

Gheorghe Surpateanu*
Affiliation:
Academy of Romanian Scientists (AOSR), 54 Splaiul Independetei, 030167 Bucharest, Romania
*

Abstract

In this paper is proposed a new theory concerning the formation of the first proteinogenic amino acids and their corresponding polypeptides starting of three syntones: methylene, nitrene and carbon monoxide. First, at low temperature in nitrogen, these three syntones form aziridinone, an asimetric compound in special conditions. Next, by a series of radical chain, izomerization, cyclization, elimination and polymerization reactions, apparently without a well defined transition states are formed a series of precursor syntones. Finally, these more structured syntones at the contract with the components of primary atmosphere, especially with water, ammonia, hydrogen sulphide, even with carbon dioxide and methane offer the first proteinogenic amino acids and their first corresponding polypeptides. As a very important aspect, the aziridinone cycle furnish the backbone of proteinogenic amino acids. The formation of each proteinogenic amino acid moiety also as its participation to construction of polypeptide structures were estimated by two parameters: (1) the complex structural factor, Fe and (2) the participation coefficient, Cp respectively. Dominantly, the quantitative results given in this paper were acquired by structural, thermodynamical and reactivity studies using DGauss with the B88-LYP GGA energy functional with high integral accuracy. Finally, an experimental assembly for obtention of amino acids and polypeptides is proposed. Brief, the three initial syntones: CH2, NH and CO, in nitrogen form aziridinone. That, in reactions with the same three syntones form, the more structured syntone precursors of proteinogenic amino acids and polypeptides. At the contact with primary atmosphere components are formed the first proteinogenic amino acids and polypeptides. The first polypeptides appear from polypeptide precursors and not from proteinogenic amino acids.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Personal address: 26, Strada Cetatii, Targu Neamt, jud. Neamt, Romania

References

Abe, Y. (1997). Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 2739.Google Scholar
Abelson, P.H. (1966). Chemical events on the primitive earth. Proc. Natl. Acad. Sci. U.S.A. 55, 13651372.Google Scholar
Adamson, D.W. & Kenner, J. (1935). The preparation of diazomethane and its homologues. J. Chem. Soc. 43, 286289.Google Scholar
Allen, M.L., Metz, A.M., Timmer, R.T., Rhoads, R.E. & Browning, K.S. (1992). Isolation and sequence of the cDNAs encoding the subunits of the isozyme form of wheat protein synthesis initiation factor 4F.J. Biol. Chem. 267, 2323223236.Google Scholar
Al-Warhi, T.I., Al-Hazimi, H.M.A. & El-Faham, A. (2012). Recent development in peptide coupling reagents. J. Saudi Chem. Soc. 16, 97116.Google Scholar
Ambrogelly, A., Palioura, S. & Söll, D. (2007). Natural expansion of the genetic code. Nat. Chem. Biol. 3, 2935.Google Scholar
Anders, E. (1989). Pre-biotic organic matter from comets and asteroids. Nature 342, 255257.Google Scholar
Arndt, F. (1943). Diazomethane. In Organic Syntheses, Collective Volume 2, ed. Blatt, A.H., pp. 165166. John Wiley and Sons, Inc., New York.Google Scholar
Arndt, F. & Amende, J. (1930). Zur Darstellung von Diazomethan. Angewandte Chemie Int. Ed. Eng. 43, 444446.Google Scholar
Atherton, E. & Sheppard, R.C. (1989). Solide Phase Peptide Synthesis: A Practical Approach. Oxford University Press, UK.Google Scholar
Atreya, S.K., Mahaffy, P.R., Niemann, H.B., Wong, M.H. & Owen, T.C. (2003). Composition and origin of the atmosphere of Jupiter – an update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105112.Google Scholar
Bach, R.D. & Dmitrenko, O. (2006). The effect of carbonyl substitution on the strain energy of small ring compounds and their six-member ring reference compounds. J. Am. Chem. Soc. 128, 45984611.Google Scholar
Baltrusaitis, J., Patterson, E. & Hatch, C. (2012). Computational studies of CO2 activation via photochemical reactions with reduced sulfur compounds. J. Phys. Chem. A 116, 93319339.Google Scholar
Barbier, B., Chabin, A., Chaput, D. & Brack, A. (1998). Photochemical processing of amino acids in earth orbit. Planet. Space Sci. 46, 391398.Google Scholar
Baslé, E., Joubert, N. & Pucheault, M. (2010). Protein chemical modification on endogenous amino acids. Chem. Biol. 17, 213227.Google Scholar
Beavis, R.C. (1997). Protecting groups used in peptide synthesis [online]. http://128.122.10.5/aainfo/deriv.htm.Google Scholar
Becerra, R. & Monty Frey, H. (1987). Insertion reactions of methylene. Chem. Phys. Lett. 138, 330332.Google Scholar
Bernardi, F., Olivucci, M. & Robb, M.A. (1996). Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev. 25, 321328.Google Scholar
Bernstein, M.P., Dworkin, J.P., Sandford, S.A., Cooper, G.W. & Allamandola, L.J. (2002). Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416, 401403.Google Scholar
Blagojevic, V., Petrie, S. & Bohme, D.K. (2003). Gas-phase syntheses for interstellar carboxylic and amino acids. Mon. Not. R. Astron. Soc. 339, L7L11.Google Scholar
Bodanszky, M. (1993). Principles of Peptide Synthesis, 2nd edn. Springer-Verlag, Berlin.Google Scholar
Brack, A. (2007). From interstellar amino acids to prebiotic catalytic peptides: a review. Chem. Biodiversity 4, 665679.Google Scholar
Brase, S. & Banert, K. (2010). Organic Azides: Syntheses and Applications. John Wiley & Sons, USA.Google Scholar
Cache Worksystem Library version 7.5.0.85 (2006). Fujitsu, Poland.Google Scholar
Cesare, V., Lyons, T.M. & Lengyel, I. (2002). A high-yielding general synthesis of α-lactams. Synthesis 12, 17161720.Google Scholar
Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K. & Garrel, L. (2001). Carbonaceous meteorites as a source of sugar-related organic compounds for the early earth. Nature 414, 879883.Google Scholar
Cottin, H., Gazeau, M.C. & Raulin, F. (1999). Cometary organic chemistry: a review from observations, numerical and experimental simulations. Planet. Space Sci. 47, 11411162.Google Scholar
Dalgarno, A. (2006). The galactic cosmic ray ionization rate. Proc. Natl. Acad. Sci. U.S.A. 103, 1226912273.Google Scholar
Díaz-Rodrígueaz, A. & Davis, B.G. (2011). Chemical modification in the creation of novel biocatalysts. Curr. Opin. Chem. Biol. 15, 211219.Google Scholar
Duan, P., Dai, L. & Savage, P.E. (2010). Kinetics and mechanism of N-substituted amide hydrolysis in high-temperature water. J. Supercritical Fluids 51, 362368.Google Scholar
Dyer, K.F. (1971). The quiet revolution: a new synthesis of biological knowledge. J. Biol. Educ. 5, 1524.Google Scholar
Ehrenfreund, P., Bernstein, M.P., Dworkin, J.P., Sandford, S.A. & Allamandola, L.J. (2001). The photostability of amino acids in space. Astrophys. J. 550, L95L99.Google Scholar
El Firdoussi, A., Esseffar, M., Bouab, W., Abboud, J.-L.M., , O. & Yáñez, M. (2004). Push−pull electronic effects in charge-transfer complexes: the case of N−H and N−Me lactams. J. Phys. Chem. A 108, 1056810577.Google Scholar
El Firdoussi, A., Esseffar, M., Bouab, W., Abboud, J.-L.M., , O., Yáñez, M. & Ruasse, M.F. (2005). Density functional theory study of the hydrogen bond interaction between lactones, lactams, and methanol. J. Phys. Chem. A 109, 91419148.Google Scholar
Elsila, J.E., Dworkin, J.P., Bernstein, M.P., Martin, M.P. & Sandford, S.A. (2007). Mechanisms of amino acid formation in interstellar ice analogs. Astrophys. J. 660, 911918.Google Scholar
Elsila, J.E., Glavin, D.P. & Dworkin, J.P. (2009). Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci. 44, 13231330.Google Scholar
Fegley, B. Jr., Prinn, R.G., Hartman, H. & Watkins, G.H. (1986). Chemical effects of large impacts on the earth's primitive atmosphere. Nature 319, 305308.Google Scholar
García-Hernández, D.A., Manchado, A., García-Lario, P., Stanghellini, L., Villaver, E., Shaw, R.A., Szczerba, R. & Perea-Calderon, J.V. (2010). Formation of fullerenes in H-containing planetary nebulae. Astrophys. J. Lett. 724, L39L43.Google Scholar
Geballe, T.R. & Oka, T. (1996). Detection of H+3 in interstellar space. Nature 384, 334335.Google Scholar
Geysen, H.M., Meloen, R.H. & Barteling, S.J. (1984). Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. U.S A. 81, 39984002.Google Scholar
Goumans, T.P.M., Ehlers, A.W., Lammertsma, K. & Würtherwein, E.-U. (2003). Endo/exo preferences for double bonds in three-membered rings including phosphorus compounds. Eur. J. Organic Chem. 15, 29412946.Google Scholar
Grainger, R.S. & Munro, K.R. (2015). Recent advances in alkylidene carbene chemistry. Tetrahedron 71, 77957835.Google Scholar
Greenberg, A., Chiu, Y.-Y., Johnson, J.L. & Liebman, J.F. (1991). The resonance energy of amides, the structure of aziridinone, and its relationship to other strained lactams. Struct. Chem. 2, 117126.Google Scholar
Greenberg, A., Hsing, H.-J. & Liebman, J.F. (1995). Aziridinone and 2-azetidinone and their protonated structures. An ab initio molecular orbital study making comparisons with bridgehead bicyclic lactams and acetamide. J. Mol. Struc. (THEOCHEM) 338, 83100.Google Scholar
Greenberg, A., Moore, D.T. & DuBois, T.D. (1996). Small and medium-sized bridgehead bicyclic lactams: a systematic ab initio molecular orbital study. J. Am. Chem. Soc. 118, 86588668.Google Scholar
Guan, J.S., Xie, H. & Ding, X. (2015). The role of epigenetic regulation in learning and memory. Exp. Neurol. 268, 3036.Google Scholar
Harrison, A.G., Csizmadia, I.G., Tang, T.H. & Tu, Y.P. (2000). Reaction competition in the fragmentation of protonated dipeptides. J. Mass Spectrom. 35, 683688.Google Scholar
Jung, S.-H., Jang, S.-C., Kim, J.-W., Kim, J.-W. & Choi, J.-H. (2015). Theoretical investigation of the radical–radical reaction of O(3P) + C2H3 and comparison with gas-phase crossed-beam experiments. J. Phys. Chem. A 119, 1176111771.Google Scholar
Kasamatsu, T., Kaneko, T., Saito, T. & Kobayashi, K. (1997). Formation of organic compounds in simulated interstellar media with high energy particles. Bull. Chem. Soc. Jpn 70, 10211026.Google Scholar
Kassaee, M.Z., Musavi, S.M. & Jalalimanesh, N.J. (2008). A new generation of intermediates at ab initio and DFT levels: allylic carbenonitrenes, C =(X)C-N(X = H, CH3, COOH, F, OH, OCH3, CF3, CN, and NH2. J. Theoretical Comput. Chem. 7, 367379.Google Scholar
King, J.L. & Jukes, T.H. (1969). Non-Darwinian evolution. Science 164, 788798.Google Scholar
Kirmse, W. (1971). Carbene Chemistry, 2nd edn. Academic Press, New York.Google Scholar
Kisumi, M., Komatsubara, S. & Chibata, I. (1977). Pathway for isoleucine formation form pyruvate by leucine biosynthetic enzymes in leucine-accumulating isoleucine revertants of Serratia marcescens. Biochem. J. 82, 95103.Google Scholar
Kobayashi, K., Kasamatsu, T., Kaneko, T., Koike, J., Oshima, T., Saito, T., Yamamoto, T. & Yanagawa, H. (1995). Formation of amino acid precursors in cometary ice environments by cosmic radiation. Adv. Space Res. 16, 2126.Google Scholar
Kobayashi, K., Kaneko, T., Saito, T. & Oshima, T. (1998). Amino acid formation in gas mixtures by high energy particle irradiation. Origins Life Evol. Biosph. 28, 155165.Google Scholar
Kobayashi, K., Ogawa, T., Tonishi, H., Kaneko, T., Takano, Y., Takahashi, J.I., Saito, T., Muramatsu, Y., Yoshida, S. & Utsumi, Y. (2008). Synthesis of amino acid precursors from simulated interstellar media by high-energy particles or photons. Electron. Commun. Jpn. 91, 1521.Google Scholar
Liebman, J.F. & Greenberg, A. (1974). Estimation by bond-additivity schemes of the relative thermodynamic stabilities of three-membered-ring systems and their open dipolar forms. J. Org Chem. 39, 123130.Google Scholar
Loeb, A. (2014). The habitable epoch of the early universe. Int. J. Astrobiol. 13, 337339.Google Scholar
Merrifield, R.B. (1963). Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 21492154.Google Scholar
Miller, M.W., Audrieth, L.F. & Filbert, W.F. (1946). Inorganic Syntheses, vol. 2. McGraw-Hill Book Company.Google Scholar
Miller, S.I. (1953). A production of amino acids under possible primitive earth conditions. Science 117, 528529.Google Scholar
Montalbetti, C.A.G.N. & Falque, V. (2005). Amide bond formation and peptide coupling. Tetrahedron 61, 1082710852.Google Scholar
Mulas, G., Malloci, G., Joblin, C. & Toublanc, D. (2006). Estimated IR and phosphorescence emission fluxes for specific polycyclic aromatic hydrocarbons in the red rectangle. Astron. Astrophys. 446, 537549.Google Scholar
Nickel, A. & Stadler, S.C. (2015). Role of epigenetic mechanisms in epithelial-to mesenchymal transition of breast cancer cells. Transl. Res.: J. Lab. Clinical Med. 165, 126142.Google Scholar
Park, H., Suh, J. & Lee, S. (1999). Ab initio studies of the intramolecular amide hydrolysis in N-methylmaleamic acids. J. Mol. Struct.: THEOCHEM 490, 4754.Google Scholar
Pizzarello, S. & Weber, A.L. (2004). Prebiotic amino acids as asymmetric catalysts. Science 303, 11511151.Google Scholar
Schesinger, G. & Miller, S.L. (1983). Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I. Amino acids. J. Mol. Evol. 19, 376382.Google Scholar
Schnölzer, M., Alewood, P., Jones, A., Alewood, D. & Kent, S.B.H. (1992). In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int. J. Peptide Protein Res. 40, 180193.Google Scholar
Schowen, R.L., Jayaraman, H. & Kershner, L. (1966). Kinetic evidence for a two-step mechanism of amide hydrolysis. Tetrahedron Lett. 7, 497500.Google Scholar
Sheehan, J.C. & Izzo, P.T. (1949). The reaction of diazomethane with isocyanates and isothiocyanates. J. Am. Chem. Soc. 71, 40594062.Google Scholar
Shustov, G.V., Kachanov, A.V., Chervin, I.I., Kostyanovsky, R.G. & Rauk, A. (1994). Stereochemistry and chiroptical properties of 1,3-dialkylaziridinones (α-lactams). chiral rules for the nonplanar amide chromophore. Can. J. Chem. 72, 279286.Google Scholar
Sims, I.R. & Smith, I.W.M. (1995). Gas-phase reactions and energy transfer at very low temperatures. Annu. Rev. Phys. Chem. 46, 109138.Google Scholar
Sorrell, W.H. (2001). Origin of amino acids and organic sugars in interstellar clouds. Astrophys. J. 555, L129L132.Google Scholar
Surpateanu, G. & Lungu, N.C. (2011). Chemical behaviour of methylene in the presence of ammonia, carbon dioxide and water. Rev. Chim. Bucharest 62, 11071110.Google Scholar
Surpateanu, G., Catteau, J.P., Karafiloglou, P. & Lablache-Combier, A. (1976). Structure and reactivity of cycloimmonium ylides. Tetrahedron 32, 26472663.Google Scholar
Takano, Y., Takahashi, J., Kaneko, T., Marumo, K. & Kobayashi, K. (2007). Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light. Earth Planet. Sci. Lett. 254, 106114.Google Scholar
Tang, T.-H., Fang, D.-C., Harrison, A.G. & Csizmadia, I.G. (2004). A computational study of the fragmentation of b3 ions derived from protonated peptides. J. Mol. Struct. (THEOCHEM) 675, 7993.Google Scholar
Thaddeus, P. (2006). The prebiotic molecules observed in the interstellar gas. Phil. Trans. R. Soc. B 361, 16811687.Google Scholar
Tian, F., Toon, O.B., Pavlov, A.A. & De Sterck, H. (2005). A hydrogen-rich early earth atmosphere. Science 308, 10141017.Google Scholar
Treschanke, L. & Rademacher, P. (1985). Electronic structure and conformational properties of the amide linkage: part 1. Geometric and electronic structure of lactams as determined by MNDO calculations. J. Mol. Struct. (THEOCHEM) 122, 3545.Google Scholar
Urey, H.C. (1952). On the early chemical history of the earth and the origin of life. Proc. Natl. Acad. Sci. U.S.A. 38, 351363.Google Scholar
Wall, M.A., Coleman, D.E., Lee, E., Iñiguez-Lluhi, J.A., Posner, B.A., Gilman, A.G. & Sprang, S.R. (1995). The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83, 10471058.Google Scholar
Wegner, M., Neddermann, D., Piorunska-Stolzmann, M. & Jagodzinski, P.P. (2014). Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res. Clin. Pract. 105, 164175.Google Scholar
Wiklind, T. & Combes, F. (1996). The redshift of the gravitational lens of PKS1830–211 determined from molecular absorption lines. Nature 379, 139141.Google Scholar
Williams, S.M. & Brodbelt, J.S. (2004). MS n characterization of protonated cyclic peptides and metal complexes. J. Am. Soc. Mass Spectrom. 15, 10391054.Google Scholar
Wincel, H., Fokkens, R.H. & Nibbering, N.M.M. (2000). Peptide bond formation in gas-phase ion/molecule reactions of amino acids: a novel proposal for the synthesis of prebiotic oligopeptides. Rapid Commun. Mass Spectrom. 14, 135140.Google Scholar
Zugravescu, J., Rucinschi, E. & Surpateanu, G. (1970). The action of carbenes on N-heterocycles (I). Tetrahedron Lett. 11, 941942.Google Scholar
Zugravescu, J., Rucinschi, E. & Surpateanu, G. (1971). Isoquinolinium-ylures. Sur les réactions de décomposition de quelques isoquinoleinium ylures. Revue Roumaine de Chimie 16, 10991104.Google Scholar