Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T08:17:07.628Z Has data issue: false hasContentIssue false

CNTFET Gas Sensors Using SWCNT Mats: Method for Low-cost Fabrication, Solution to Improve Selectivity, Experimental Results using Interfering Agents

Published online by Cambridge University Press:  31 January 2011

Paolo Bondavalli
Affiliation:
paolo.bondavalli@thalesgroup.com
Louis Gorintin
Affiliation:
louis.gorintin@thalesgroup.com, Thales Research and Technology, 91120, France
Pierre Legagneux
Affiliation:
pierre.legagneux@thalesgroup.com, Thales Research and Technology, 91120, France
Didier Pribat
Affiliation:
didier.pribat@polytechnique.edu, Ecole Polytechnique, 91120, France
Laurent Caillier
Affiliation:
laurent.caillier@cea.fr, CEA LITEN, 38000, France
Jean-Pierre Simonato
Affiliation:
jean-pierre.simonato@cea.fr, CEA LITEN, 38000, France
Get access

Abstract

The first paper showing the great potentiality of Carbon Nanotubes Field Effect transistors (CNTFETs) for gas sensing applications was published in 2000 [1]. It has been demonstrated that the performances of this kind of sensors are extremely interesting: a sensitivity of around 100ppt (e.g. for NO2 [2]) has been achieved in 2003 and several techniques to improve selectivity have been tested with very promising results [2]. The main issues that have not allowed, up to now, these devices to strike more largely the market of sensors, have been the lack of an industrial method to obtain low-cost devices, a demonstration of their selectivity in relevant environments and finally a deeper study on the effect of humidity and the possible solutions to reduce it. This contribution deals with CNTFETs based sensors fabricated using air-brush technique deposition on large surfaces. Compared to our last contribution [3], we have optimized the air-brush technique in order to obtain high performances transistors (Log(Ion)/Log(Ioff) ∼ 5/6) with highly reproducible characteristics : this is a key point for the industrial exploitation. We have developed a machine which allows us the dynamic deposition on heated substrates of the SWCNT solutions, improving dramatically the uniformity of the SWCNT mats. We have performed tests using different solvents that could be adapted as a function of the substrates (e.g. flexible substrates). Moreover these transistors have been achieved using different metal electrodes (patented approach [4]) in order to improve selectivity. Results of tests using NO2, NH3 with concentrations between ∼ 1ppm and 10ppm will be shown during the meeting.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ijima, S., Nature 354, pp. 5658, 1991 Google Scholar
2.PAvouris, h., Chen, Z. and Perebeinos, V., Nature Nanotechnology 2, pp. 605615, (2007)Google Scholar
3. Collins, P.G., Hersam, M., Arnold, M., Martel, R. & Avouris, P., Phys. Rev. Lett. 86, pp. 31283131, (2001)Google Scholar
4. Kim, P., Sh, L. Majumdar, i. A., McEuen, P. L., Phys.Rev.Lett. 87, p. 215502, (2001)Google Scholar
5. Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., Shimizu, T., Appl. Phys. A A74, pp. 339343, (2002)Google Scholar
6. Hone, J., Llaguno, M. C., Biercuk, M. J., Johnson, A. T., Batlogg, B., Benes, Z., Fischer, J. E., Appl.Phys. A 74, no 3, pp. 339343, (2002)Google Scholar
7. Ruoff, R. S., Qian, D., Liu, W. Kam, C. R. Physique 4, pp. 9931008, (2003)Google Scholar
8. Heer, W. A. de, Chatelain, A., and Urgate, D., Science 270, pp. 11791180, (1995)Google Scholar
9. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., and Dai, H., Science 283, pp. 512514 (1999)Google Scholar
10. Teo, K., JOM 59, pp. 2932, (2007)Google Scholar
11. Kim, Y. C. and Yoo, E. H., Jpn. J. Appl. Phys., 44, pp. L454–L456, (2005)Google Scholar
12. Sugie, H., Tanemura, M., Filip, V., Iwata, K., Takahashi, K., and Okuyama, F., Appl. Phys. Lett, 78, pp. 25782580, (2001)Google Scholar
13. Prasher, R., Proceedings of the IEEE 94, pp. 15711586, (2006)Google Scholar
14. Qian, D., Wagner, G. J., Liu, W. K., Yu, M-F., Ruoff, R. S., Appl. Mech. Rev. 55, pp. 495532, (2002)Google Scholar
15. Appenzeller, J., Knoch, J., Martel, R., Derycke, V., Wind, S. J., IEEE transactions on nanotechnology 1, pp. 184189, (2002)Google Scholar
16. Dai, H., Surface Science 500, pp. 218241, (2002)Google Scholar
17. Sinha, N., Ma, J., Yeow, J. T. W., J.Nanoscience and Nanotechnology 6, pp. 573590, (2006)Google Scholar
18. Chen, R. J., Choi, H. C., Bangsaruntip, S., Yenilmez, E., Tang, X., Wang, Q., Chang, Y-L., Dai, H., J. Am. Chem. Soc. 26, pp.15631568, (2004)Google Scholar
19. Chen, R.J., Bangsaruntip, S., Drouvalakis, K. A., Kam, N. W. S., Shim, M., Li, Y., Kim, W., Utz, P. J. and Dai, H., PNAS 100, pp.49844989, (2003)Google Scholar
20. Koratkar, N., Ajayna, P., Modi, A., Lass, E., Patent WO/2004/059298 Google Scholar
21. Goldoni, A., Petaccia, L., Lizzit, S. and Larciprete, R., J. Am. Chem. Soc., 125 pp 1132911333, (2003)Google Scholar
22. Ueda, T., Norimatsu, H., Md. Bhuiyan, M. H., Ikegami, T. and Ebihara, K., Jpn. J. Appl. Phys 45, pp. 83938397, (2006)Google Scholar
23. Li, J., Lu, Y., Ye, Q., Cinke, M., Han, J. and Meyyappan, M., Carbon Nanotube Sensors for Gas and Organic Vapor Detection, Nanoletters 3, 929933, (2003)Google Scholar
24. Valentini, L., Armetano, I., Kenny, J. H., Cantalini, C., Lozzi, L., Santucci, S., Appl.Phys.Lett. 82, pp. 961963, (2003)Google Scholar
25. Saito, R., Dresselhaus, G., Dressealhaus, M. S., Physical properties of carbon nanotubes, ed. Imperial college press, 259 (2003)Google Scholar
26. Kong, J., Franklin, N., Chou, C., Pan, S., Cho, K. J. and Dai, H., Science 287, pp. 622625, (2000).Google Scholar
27. Bondavalli, P., Legagneux, P., Pribat, D., Sensors and Actuators B V.140, pp 304318, (2009)Google Scholar
28. Bondavalli, P., Legagneux, P., Pribat, D., Mat. Res. Society Proc. 1081, P14–02, (2008)Google Scholar
29. Bondavalli, P., Legagneux, P., Pribat, D., Patent WO/2006/128828 Google Scholar