Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T07:39:01.081Z Has data issue: false hasContentIssue false

The Use of Surface Enhanced Raman Scattering for the Detection of Dipicolinic Acid on Silver Nanoparticles

Published online by Cambridge University Press:  11 February 2011

Terry E. Phillips
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723–6099, USA
Jennifer L. Sample
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723–6099, USA
Peter F. Scholl
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723–6099, USA
Joseph Miragliotta
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723–6099, USA
Get access

Abstract

We report on the use of surface enhanced Raman scattering (SERS) for the detection of dipicolinic acid (DPA) adsorbed on a silver (Ag) nanoparticle substrate. We have examined the interaction of DPA with Ag nanoparticles in a slightly basic, aqueous solution and determined that the molecule adsorbs as a dipicolinate anion on the metal surface. For micro molar or lower DPA concentrations in the colloid solution, no SERS activity from the adsorbed molecule was observed until nanoparticle aggregation was induced by reducing the pH with the addition of nitric acid. Following aggregation, the SERS response exhibited vibrational bands associated with both the pyridine ring and the carboxylate moieties in the adsorbed dipicolinate species. With proper control of the colloidal solution chemistry, the dipicolinate vibrational features could be observed in the SERS spectra at concentrations as low as 20 nano molar, a limit determined by the presence of solution-based contaminants on the Ag surface. In addition to the controlled DPA analyte studies, SERS was also able to detect the release of this molecule from Bacillus globigii spores, a non-toxic simulant for Bacillus anthracis, which demonstrated the potential of this optical spectroscopy for the detection of biological and chemical agents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lund, B. M., J. Ind. Microbiol. 12, 144 (1993);Google Scholar
Gatto-Menking, D. L., Yu, H., Bruno, J. G., Goode, M. T., Miller, M., and Zulich, A., Biosens. Bioelectron. 10, 501 (1995).Google Scholar
2. Dart, R. K., Microbiology for the Analytical Chemist, (The Royal Society of Chemistry, Cambridge, UK, 1996), pg. 84.Google Scholar
3. Murrell, W. G., Adv. Microb. Physiol. 1, 233 (1967).Google Scholar
4. Hindle, A. A. and Hall, E. A. H., Analyst 124, 1549 (1999);Google Scholar
Pellegrino, P. M., Fell, N. F. Jr, Rosen, D., and Gillespie, J. B., Anal. Chem. 70, 1755 (1998).Google Scholar
5. Mukherjee, K., Sanchez-Cortes, S., Garcia-Ramos, J. V., Vibration. Spectros. 25, 91 (2001).Google Scholar
6. Farquharson, S., Maksymiuk, P., Ong, K., and Christesen, S. D., Proc. SPIE 4577, 166 (2002).Google Scholar
7. Guzelian, A. A., Sylvia, J. M., Janni, J. A., Clauson, S. L., S.L., , and Spencer, K. M., Proc. SPIE 4577, 182 (2002).Google Scholar
8. Scholl, P. F., Bargeron, C. B., Phillips, T. E., Wong, T., Abubaker, S., Groopman, J. D., Strickland, P. T., and Benson, R. C., Proc. SPIE Vol. 3913, 204 (2000).Google Scholar
9. Henglein, A., J. Phys. Chem. 97, 5457 (1993).Google Scholar
10. Prochazka, M., Mojzes, P., Stepanek, J., Vlckova, B., and Turpin, P.-Y., Anal. Chem. 69, 5103 (1997).Google Scholar
11. Miragliotta, J., Benson, R. C., Phillips, T. E., and Emerson, J. A., MRS Symp. Proc. 515, ed. Belton, D. J., Gaynes, M., Jacobs, E. G., Pearson, R., and Wu, T. (MRS, Pittsburgh, PA, 1997), pg. 245.Google Scholar
12. Neddersen, J., Chumanov, G., and Cotton, T. M., Appl. Spectros. 47, 1959 (1993).Google Scholar
13. Munro, C. H., Smith, W. E., Garner, M., Clarkson, J., and White, P. C., Langmuir 11, 3712 (1995).Google Scholar
14. Chew, H., Wang, D. S., and Kerker, M., J. Opt. Soc. Am. B. 1, 56 (1984).Google Scholar
15. Xu, H., Bjerneld, E. J., Kall, M., and Borjesson, L., Phys. Rev. Lett. 83, 4357 (1999).Google Scholar
16. Sanchex-Cortes, S. and Garcia-Ramos, J. V., Surf. Sci. 473, 133 (2001).Google Scholar
17. Blactchford, C. G., Siiman, D., Kerker, M., J. Phys. Chem. 87, 2503 (1983).Google Scholar
18. Hameka, H. F., Jensen, J. O., Jensen, J. L., Merrow, C. N., Vlahacos, C. P., J. Mol. Struc. 365, 131 (1996).Google Scholar
19. Sasaki, Y., Iwasaki, N., and Nishina, Y., Surf. Sci. 198, 541 (1988).Google Scholar