Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T01:55:55.323Z Has data issue: false hasContentIssue false

Silicon Single-Electron Transistors and Single-Electron CCD

Published online by Cambridge University Press:  15 March 2011

Yasuo Takahashi
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Akira Fujiwara
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Yukinori Ono
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Hiroshi Inokawa
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Get access

Abstract

We have developed two types of devices for silicon-single-electronics; a single-electron transistor (SET) and a single-electron charge coupled device (CCD). Both devices were fabricated on SOI (silicon on insulator) wafers. For the SET fabrication, we used a novel method called pattern-dependent oxidation (PADOX), which exploits special phenomena that occur during thermal oxidation of a small silicon structure. The Si structures are converted into small Si SETs by consequence of stress-induced bandgap narrowing and quantum size effects. Since the size of the resultant Si island is about 10 nm, the SETs operate at relatively high temperatures. We have already developed several kinds of application of Si SETs by utilizing the special features of SETs. In addition, we have developed a single-electron CCD that enables us to manipulate a single electron without tunnel capacitors. The device utilizes small Si-wire MOSFETs connected in series, and an elementary charge can be transferred like in a CCD.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Likharev, K. K., Proc. IEEE, 87, 606 (1999).Google Scholar
[2] Takahashi, Y., Nagase, M., Namatsu, H., Kurihara, K., Iwadate, K., Nakajima, Y., Horiguchi, S., Murase, K., and Tabe, M., Electron. Lett., 31, 136 (1995).Google Scholar
[3] Ono, Y., Takahashi, Y., Yamazaki, K., Nagase, M., Namatsu, H., Kurihara, K., and Murase, K., IEEE Trans. Electron Devices, 47, 147 (2000).Google Scholar
[4] Fujiwara, A. and Takahashi, Y., Nature, 410, 560 (2001).Google Scholar
[5] Kao, D., McVittie, J. P., Nix, W. D., and, Saraswat, K. C., IEEE Trans. Electron Device, 35, 25 (1988).Google Scholar
[6] Nagase, M., Fujiwara, A., Yamazaki, K., Takahashi, Y., Murase, K., and Kurihara, K., Microelectronic Engineering, 41/42, 527 (1998).Google Scholar
[7] Takahashi, Y., Fujiwara, A., Nagase, M., Namatsu, H., Kurihara, K., Iwadate, K., and Murase, K., Int. J. Electronics, 86, 549 (1999).Google Scholar
[8] Liu, H. I., Biegelsen, D. K., Johnson, N. M., Ponce, F. A., Pease, R. F. W., J. Vac. Sci. Technol., B 11, (1993) 2532.Google Scholar
[9] Shiraishi, K., Nagase, M., Horiguchi, S., Kageshima, H., Uematsu, M., Takahashi, Y., and Murase, K., Physica E, 7, 337 (2000).Google Scholar
[10] Horiguchi, S., Nagase, M., Shiraishi, K., Kageshima, H., Takahashi, Y., and Murase, K., Jpn. J. Appl. Phys., 40, L29 (2001).Google Scholar
[11] Takahashi, Y., Namatsu, H., Kurihara, K., Iwadate, K., Nagase, M., and Murase, K., IEEE Trans. Electron Devices ED–43, 1213 (1996).Google Scholar
[12] Zimmerman, N. M., Huber, W. H., Fujiwara, A. and Takahashi, Y., Appl. Phys. Let. 79, 3188 (2001).Google Scholar
[13] Fujiwara, A., Takahashi, Y., Murase, K. and Tabe, M., Appl. Phys. Let. 67, 2957 (1995).Google Scholar
[14] Takahashi, Y., Fujiwara, A., Yamazaki, K., Namatsu, H., Kurihara, K., and Murase, K., Electron. Lett., 34, 45 (1998).Google Scholar
[15] Takahashi, Y., Fujiwara, A., Yamazaki, K., Namatsu, H., Kurihara, K., and Murase, K., Jpn. J. Appl. Phys. 38, 2457 (1999).Google Scholar
[16] Tucker, J. R., J. Appl. Phys., 72, 4399 (1992).Google Scholar
[17] Ono, Y., Takahashi, Y., Yamazaki, K., Nagase, M., Namatsu, H., Kurihara, K., and Murase, K., Appl. Phys. Lett., 76, 3121 (2000).Google Scholar
[18] Heij, C. P., Hadley, P., and Mooij, J. E., Appl. Phys. Lett., 78, 1140 (2001).Google Scholar
[19] Inokawa, H., Fujiwara, A. and Takahashi, Y., Appl. Phys. Let. 79, 3618 (2001).Google Scholar