Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T15:10:08.669Z Has data issue: false hasContentIssue false

Growth of TiO2 thin films on Si(001) and SiO2 by reactive high power impulse magnetron sputtering

Published online by Cambridge University Press:  01 July 2011

F. Magnus
Affiliation:
Science Institute, University of Iceland, Dunhaga 3, IS-107, Reykjavik, Iceland
B. Agnarsson
Affiliation:
Science Institute, University of Iceland, Dunhaga 3, IS-107, Reykjavik, Iceland
A. S. Ingason
Affiliation:
Science Institute, University of Iceland, Dunhaga 3, IS-107, Reykjavik, Iceland Thin Film Physics, Department of Physics (IFM), Linköping University, Linköping SE-581 83, Sweden
K. Leosson
Affiliation:
Science Institute, University of Iceland, Dunhaga 3, IS-107, Reykjavik, Iceland
S. Olafsson
Affiliation:
Science Institute, University of Iceland, Dunhaga 3, IS-107, Reykjavik, Iceland
J. T. Gudmundsson
Affiliation:
Science Institute, University of Iceland, Dunhaga 3, IS-107, Reykjavik, Iceland UM-SJTU Joint Institute, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
Get access

Abstract

Thin TiO2 films were grown on Si(001) and SiO2 substrates by reactive dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS) at temperatures ranging from 300 to 700 °C. Both dcMS and HiPIMS produce polycrystalline rutile TiO2 grains, embedded in an amorphous matrix, despite no postannealing taking place. HiPIMS results in significantly larger grains, approaching 50% of the film thickness at 700 °C. In addition, the surface roughness of HiPIMS-grown films is below 1 nm rms in the temperature range 300–500 °C which is an order of magnitude lower than that of dcMS-grown films. The results show that smooth, rutile TiO2 films can be obtained by HiPIMS at relatively low growth temperatures, without postannealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lobl, P., Huppertz, M. and Mergel, D., Thin Solid Films 251(1), 7279 (1994).Google Scholar
2. Wiggins, M. D., Nelson, M. C. and Aita, C. R., J Vac Sci Technol A 14(3), 772776 (1996).Google Scholar
3. Balasubramanian, K., Han, X. F. and Guenther, K. H., Appl Optics 32(28), 55945600 (1993).Google Scholar
4. Mraz, S. and Schneider, J. M., J. Appl. Phys. 109(2), 023512 (2011).Google Scholar
5. Wicaksana, D., Kobayashi, A. and Kinbara, A., J Vac Sci Technol A 10(4), 14791482 (1992).Google Scholar
6. Wilk, G. D., Wallace, R. M. and Anthony, J. M., J. Appl. Phys. 89(10), 52435275 (2001).Google Scholar
7. Eufinger, K., Poelman, D., Poelman, H., De Gryse, R. and Marin, G. B., in Thin Solid Films: Process and Applications, edited by Nam, N. C. (2008).Google Scholar
8. Salem, I., Catal Rev 45(2), 205296 (2003).Google Scholar
9. Liu, J. X., Yang, D. Z., Shi, F. and Cai, Y. J., Thin Solid Films 429(1-2), 225230 (2003).Google Scholar
10. Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A. P. and Gudmundsson, J. T., Thin Solid Films 513(1-2), 124 (2006).Google Scholar
11. Gudmundsson, J. T., Vacuum 84(12), 13601364 (2010).Google Scholar
12. Davis, J. A., Sproul, W. D., Christie, D. J. and Geisler, M., in Society of Vacuum Coaters 47th Annual Technical Conference (Dallas, 2004), pp. 215.Google Scholar
13. Konstantinidis, S., Dauchot, J. P. and Hecq, A., Thin Solid Films 515(3), 11821186 (2006).Google Scholar
14. Sarakinos, K., Alami, J. and Wuttig, M., J Phys D Appl Phys 40(7), 21082114 (2007).Google Scholar
15. Alami, J., Sarakinos, K., Uslu, F., Klever, C., Dukwen, J. and Wuttig, M., J Phys D Appl Phys 42(11), 115204 (2009).Google Scholar
16. Thompson, C. V., Mater. Res. Soc. Symp. Proc. 343, 3 (1994).Google Scholar
17. Smith, D. L., Thin-Film Deposition: Principles and Practice. (McGraw-Hill, Boston, Massachusetts, 1995).Google Scholar
18. Alami, J., Persson, P. O. A., Music, D., Gudmundsson, J. T., Bohmark, J. and Helmersson, U., J Vac Sci Technol A 23(2), 278280 (2005).Google Scholar