Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T01:08:01.528Z Has data issue: false hasContentIssue false

Optoelectronic and Structural Properties of Vacuum-Deposited Crystalline Organic Thin Films

Published online by Cambridge University Press:  16 February 2011

S. R. Forrest
Affiliation:
Advanced Technology Center for Photonics an d Optoelectronic Materials (ATC/POEM) Department of Electrical Engineering, Princeton University Princeton, NJ 08544
P. E. Burrows
Affiliation:
Advanced Technology Center for Photonics an d Optoelectronic Materials (ATC/POEM) Department of Electrical Engineering, Princeton University Princeton, NJ 08544
E. I. Haskal
Affiliation:
Advanced Technology Center for Photonics an d Optoelectronic Materials (ATC/POEM) Department of Electrical Engineering, Princeton University Princeton, NJ 08544
Y. Zhang
Affiliation:
Advanced Technology Center for Photonics an d Optoelectronic Materials (ATC/POEM) Department of Electrical Engineering, Princeton University Princeton, NJ 08544
Get access

Abstract

Recently, it has been discovered that crystalline organic thin films can be deposited in nearly single crystalline form on a variety of substrates such as glass, polymers, etc. Since then, this discovery has led to the growth of crystalline organic quantum wells, waveguides, coupler/switches, and organic/ inorganic heterojunction devices such as field effect transistors and avalanche photodiodes. Organic light emitting diodes (LEDs) which luminesce in the red, green and blue have also been demonstrated. In this paper, we will report on several recent advances in the growth of organic thin films deposited by organic molecular beam deposition. We report on modeling of organic monolayer growth based on the atom-atom potential Method. The Model provides insight into the factors which control “quasi-epitaxial growth” i.e. the ordered growth of one layer of an organic film which is incommensurate with the substrate lattice. We also observe large optical nonlinearities which are a feature of both single and Multi-layer crystalline organic films. The growth of organic, nonlinear optically active crystalline organic compounds are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

VII. REFERENCES

1. Forrest, S. R., Kaplan, M. L. and Schmidt, P. H., J. Appl. Phys., 56, 543 (1984).Google Scholar
2. So, F. F., Forrest, S. R., Shi, Y. Q. and Steier, W. H., Appl. Phys. Lett., 56, 674 (1990).Google Scholar
3. So, F. F. and Forrest, S. R., Phys. Rev. Lett., 66, 2649 (1991).Google Scholar
4. Cincotti, S. and Rabe, J. B., Appl. Phys. Lett., 62, 3531 (1993).Google Scholar
5. Burrows, P. E. and Forrest, S. R., Appl. Phys. Lett., 62, 3102 (1993).Google Scholar
6. Imanishi, Y., Hattori, S., Kakuta, A. and Numata, S., Phys. Rev. Lett., 71, 2098 (1993).Google Scholar
7. Zimmermann, U., Schnitzler, G., Karl, N. and Umbach, E., Thin Solid Films, 175, 85 (1989).Google Scholar
8. Hoshi, H., Marayama, Y., Masuda, H., and Inabe, T., J. Appl. Phys., 68, 1396 (1990).CrossRefGoogle Scholar
9. Zang, D. Y., Shi, Y. Q., So, F. F., Forrest, S. R. and Steier, W. H., Appl. Phys. Lett. 58, 562 (1990).CrossRefGoogle Scholar
10. So, F. F. and Forrest, S. R., IEEE Trans. Electron. Dev., 36, 66 (1988).Google Scholar
11. Tang, C. W., Appi, Phys. Lett., 48, 183 (1986).Google Scholar
12. Novaco, A. D. and McTague, J. P., Phys. Rev. Lett., 38, 1286 (1977).CrossRefGoogle Scholar
13. Itoh, C., Miyazaki, T., Aizawa, K., Aoki, H. and Okazaki, , J. Phys. C, Solid State Phys., 21, 4527 (1988).CrossRefGoogle Scholar
14. van der Merwe, J. H., Phil. Mag. A, 45, 127 (1982).CrossRefGoogle Scholar
15. Zhang, Y. and Forrest, S. R., Phys. Rev. Lett., 71, 2765 (1992)Google Scholar
16. Kitaigorodsky, A. I., Molecular Crystals and Molecules. Academic, NY (1973).Google Scholar
17. Hara, M., Iwakabe, I, Sasabe, H., Yamada, A. and Garito, A.F., Nature 344, 228 (1990).Google Scholar
18. Lippel, P.H., Wilson, R.J., Miller, M.D., Woll, Ch. and Chiang, S., Phys. Rev. Lett. 62, 171 (1989).Google Scholar
19. Burrows, P. E., Zhang, Y., Haskal, E. I. and Forrest, S. R., Appi, Phys. Lett., 61, 2417 (1992).Google Scholar
20. Hara, M., Sasabe, H., Yamada, A. and Garito, A. F., Japan. J. Appl. Phys., 28, L306 (1989).CrossRefGoogle Scholar