Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T03:31:07.769Z Has data issue: false hasContentIssue false

Biology of two larval morphological phenotypes of Aedes aegypti in Abidjan, Côte d'Ivoire

Published online by Cambridge University Press:  23 November 2017

N. Guindo-Coulibaly*
Affiliation:
Unité de Formation et de Recherches Biosciences, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
N.R. Diakite
Affiliation:
Unité de Formation et de Recherches Biosciences, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
A.M. Adja
Affiliation:
Unité de Formation et de Recherches Biosciences, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire Institut Pierre Richet/Institut National de Santé Publique, 01 BP 1500 Bouaké, Côte d’Ivoire
J.T. Coulibaly
Affiliation:
Unité de Formation et de Recherches Biosciences, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire Département Environnement et Santé, Centre Suisse de Recherches Scientifiques, 01 BP 1303 Abidjan 01, Côte d’Ivoire Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, P.O. Box, 4002 Basel, Switzerland
K.F. Bassa
Affiliation:
Unité de Formation et de Recherches Biosciences, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
Y.L. Konan
Affiliation:
Service Lutte Antivectorielle, Institut National d’Hygiène Publique, BP V 14, Abidjan, Côte d’Ivoire
K.E. N'Goran
Affiliation:
Unité de Formation et de Recherches Biosciences, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire Département Environnement et Santé, Centre Suisse de Recherches Scientifiques, 01 BP 1303 Abidjan 01, Côte d’Ivoire
*
*Author for correspondence Phone: 00225 07 88 64 91 E-mail: coulnegno1@yahoo.fr

Abstract

Since 2008, several outbreaks of yellow fever and dengue occurred in Abidjan, the economic capital of Côte d'Ivoire. A better knowledge of the biology of Aedes aegypti populations, the main vector of yellow fever and dengue viruses, is necessary to tailor vector control strategies implemented in the city. This study was designed to determine some biological parameters, occurring during the life cycle of two morphological phenotypes of Ae. aegypti larvae. Mosquitoes were sampled in a suburb of Abidjan (Treichville) using the WHO layer-traps technique. Biological parameters were studied in laboratory under standard conditions of temperature (27°C ± 2°C) and relative humidity (80% ± 10%). Our results indicated that the mean eggs laid by females from ‘brown larvae’ (BL) (85.95, 95% confidence interval (CI 95%) 78.87–93.02) was higher than those from ‘white larvae’ (WL) (64.40%, CI 95% 55.27–73.54). The gonotrophic cycle was 3 and 4 days in females from BL and WL, respectively. The overall yield of breeding mosquitoes from BL (63.88%, CI 95% 62.61–65.14) was higher compared with those of mosquitoes from WL (59.73%, CI 95% 58.35–61.12). The sex ratio (male/female) was 0.95 and 1.68 in Ae. aegypti populations from BL and WL, respectively. Females from BL lived slightly longer than those from WL (t = −2.332; P = 0.021). This study shows that Ae. Aegypti populations from BL and WL present different biological parameters during their life cycle. This could have an implication on their ability to transmit human disease viruses such as dengue and yellow fever. Further molecular studies are needed to determine genetic divergence between these Ae. aegypti populations.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attoh-Touré, H., Dagnan, N.S. & Taglianté-Saracino, J. (2010) Résurgence des épidémies de fièvre jaune en Côte d'Ivoire. Bulletin de la Société de Pathologie Exotique 103, 323326.CrossRefGoogle ScholarPubMed
Aubry, P. & Gaüzère, B.A. (2015) Arboviroses tropicales, actualités 2015. Diplôme de Médecine Tropicale des Pays de l'Océan Indien. Available online at http://medecinetropicale.free.fr/cours/arboviroses.pdf (accessed 2015).Google Scholar
Beaty, B.J., Tesh, R.B. & Aitken, T.H.G. (1980) Transovarial transmission of yellow virus in Stegomyia mosquitoes. American Journal of Tropical Medicine and Hygiene 29, 115119.CrossRefGoogle ScholarPubMed
Christophers, S.R. (1960) Aedes aegypti L., the Yellow Fever Mosquito. Its Life History, Bionomics, and Structure. pp. 739. London-New-York, Cambridge University Press.Google Scholar
Cordellier, R. & Bouchite, B. (1973) Rapport préliminaire sur les missions d’étude des vecteurs potentiels de fièvre jaune en Afrique de l'Ouest. pp. 31. Rapport OCCGE Centre Muraz. Document Technique Entomologie n°1 (2ème Série).Google Scholar
Coulibaly, N. (2001) Diversité génétique de Aedes (Stegomyia) aegypti Linnaeus (1762) dans un quartier de Bouaké : Bio-écologie et mise au point d'une technique enzymatique de caractérisation. Mémoire du Diplôme d'Etude Approfondie (DEA). pp. 70. Université de Cocody (Abidjan-Côte d'Ivoire).Google Scholar
Edwards, F.W. (1941) Mosquitoes of the Ethiopian Region. III. Culicinae Adults and Pupa. pp. 515. London, British Museum (Natural History).Google Scholar
Etienne, M. (2001) Aspects entomologiques de la dengue en Martinique: approche de l’écologie imaginable d’Aedes aegypti dans un foyer d'endémie. DEA de parasitologie, Université de Montpellier-II, 25 p.Google Scholar
Failloux, A-B., Vazeille, M. & Rodhain, F. (2002) Geographic genetic variation in populations of the dengue virus vector Aedes aegypti. Journal of Molecular Evolution 55, 653663.CrossRefGoogle ScholarPubMed
Franco, L., Di Caro, A., Carletti, F., Vapalahti, O., Renaudat, C., Zeller, H. & Tenorio, A. (2010) Recent expansion of dengue virus serotype 3 in West Africa. Eurosurveillance 15, 19490.CrossRefGoogle ScholarPubMed
Gilchrist, B.M. & Haldane, J.B.S. (1947) Sex linkage and sex determination in a mosquito, Culex molestus. Hereditas 33, 175190.CrossRefGoogle Scholar
Goindin, D., Delannay, C., Ramdini, C., Gustave, J. & Fouque, F. (2015) Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS ONE 10, 121.CrossRefGoogle ScholarPubMed
Gray, S.M. & McKinnon, J.S. (2007) Linking colour polymorphism maintenance and speciation. Trends in Ecology and Evolution 22, 7179.CrossRefGoogle ScholarPubMed
Gubler, D.J. (2004) The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comparative Immunology, Microbiology and Infectious Diseases 27, 319330.CrossRefGoogle ScholarPubMed
Guillaumot, L. (2013) Les moustiques et la dengue. Recherche et Expertise, Entomologie Médicale. Available online at http://www.institutpasteur.nc/les-moustiques-et-la-dengue/ (accessed 2013).Google Scholar
Guindo-Coulibaly, N., Adja, A.M., Koffi, A.A., Diakité, N.R., Ahoua Alou, P.L., Bassa, K.F. & N'Goran, K.E. (2014) Insecticides susceptibility of two distinct morphologies at larval stage of Aedes aegypti (Diptera: Culicidae) from Abidjan (Côte d'Ivoire). European Journal of Scientific Research 126, 434443.Google Scholar
Hall, A.B., Basu, S., Jiang, X., Qi, Y., Timoshevskiy, V.A., Biedler, J.K., Sharakhova, M.V., Elahi, R., Anderson, M.A.E., Chen, X.-G., Sharakhov, I.V., Adelman, Z.N. & Tu, Z. (2015) A male determining factor in the mosquito Aedes aegypti. Science 348(6240), 12681270.CrossRefGoogle ScholarPubMed
Hervé, J-P., Sà Filho, G.C., Travassos Da Rosa, A.P.A. & Dégallier, N. (1985) Bio-écologie d'Haemagogus (Haemagogus) janthinomys Dyar au Brésil. Cahier ORSTOM Série Entomologie Médicale et Parasitologie 23, 203208.Google Scholar
Hopkins, G.H.E. (1952) Mosquitoes of the Ethiopian Region. I. Larval bionomics of mosquitoes and taxonomy of Culicine larvae. pp. 335. London, Eds The British Museum and Bernard Quaritch Ltd.Google Scholar
Huang, Y.M. (2004) The subgenus Stegomyia of Aedes in the Afrotropical region with keys to the species (Diptera: Culicidae). pp. 120. Zootaxa.CrossRefGoogle Scholar
Konan, Y.L., Koné, A.B., Ekra, K.D., Doannio, J.M.C. & Odéhouri, K.P. (2009) Investigation entomologique à la suite de la réémergence de la fièvre jaune en 2008 à Abidjan (Côte d'Ivoire). Parasite 16, 149152.CrossRefGoogle Scholar
Leahy, M.G., Vandehey, R.C. & Booth, K.S. (1978) Differential response to oviposition site by feral and domestic population of Ae. aegypti (Linné) (Diptera: Culicidae). Bulletin of Entomological Research 68, 455463.CrossRefGoogle Scholar
Monath, T.P. (2001) Yellow fever: an update. The Lancet Infectious Diseases 1, 1120.CrossRefGoogle ScholarPubMed
Morrison, A.C., Costero, A., Edman, J.D., Clark, G.G. & Scott, T.W. (1999) Increased fecundity of Aedes aegypti fed human blood before release in a mark-recapture study in Puerto Rico. Journal of American Mosquito Association Control 15, 98104.Google Scholar
Mouchet, J., Barthe, J. & Sannier, C. (1972) La résistance aux insecticides des Aedes dans les régions d'Asie du Sud-Est et du Pacifique. Cahier ORSTOM, série Entomologie Médicale et Parasitologie 10, 301308.Google Scholar
Newton, M.E., Wood, R.J. & Southern, D.I. (1978) Cytological mapping of the M and D loci in the mosquito, Aedes aegypti (L.). Genetica 48, 137143.CrossRefGoogle Scholar
OMS, Organisation mondiale de la Santé (2011). Fièvre jaune. Aide-mémoire n°100. Genève. Available online at http://www.who/int/mediacentre/factsheets/fs100/fr/index.html (accessed 2015).Google Scholar
Pant, C.P & Yasuno, M. (1973) Field studies on the gonotrophic cycle of Aedes aegypti in Bangkok, Thailand. Journal of Medical Entomology 10, 219223.CrossRefGoogle ScholarPubMed
Powell, J.R. (1985) Geographic genetic differentiation and arbovirus competency: Aedes aegypti and yellow fever. Parasitologia 27, 1320.Google ScholarPubMed
Ravel, S., Hervé, J-P., Diarrassouba, S., Koné, A. & Cuny, G. (2002) Microsatellite markers for population genetic studies in Aedes aegypti (Diptera: Culicidae) from Côte d'Ivoire: evidence for a microgeographic genetic differentiation of mosquitoes from Bouaké. Acta Tropica 82, 3949.CrossRefGoogle ScholarPubMed
Rodhain, F. & Perez, C. (1985) Précis d'entomologie médicale et vétérinaire. pp. 458. Paris, Maloine.Google Scholar
Roulin, A. (2004) The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biological Reviews 79, 815848.CrossRefGoogle ScholarPubMed
Silva, H.H.G., Silva, I.G. & Lira, K.S. (1998) Metodologia de criação, manutenção de adultos e estocagem de ovos de Aedes aegypti (Linnaeus, 1762) em laboratório. Revista de Patologia Tropical 27, 5363.Google Scholar
Trips, M. & Hausermann, W. (1978) Genetics of house-entering behaviour in East African populations of Aedes aegypti (Linné) (Diptera: Culicidae) and its relevance to speciation. Bulletin of Entomological Research 68, 521532.CrossRefGoogle Scholar
WHO (2009) Dengue in Africa: emergence of DENV-3, Côte d'Ivoire, 2008. Weekly Epidemiological Record 84, 8588.Google Scholar
WHO (2016). Emergencies preparedness, response. Genève. Available online at http://www.who.int/csr/don/archive/disease/yellow_fever/en/ (accessed 2016).Google Scholar
William, A.H. & George, B.C. J.R. (1966) Genetic distortion of sex ratio in a mosquito Aedes aegypti. Genetics 53, 11771196.Google Scholar