Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T21:27:30.751Z Has data issue: false hasContentIssue false

Heat Transfer between a Self-Heated Scanning Thermal Microscopy Probe and a Cold Sample: Impact of the Probe Temperature

Published online by Cambridge University Press:  14 October 2013

Ali Assy
Affiliation:
Centre de Thermique de Lyon, CNRS-INSA de Lyon-UCBL, 9 rue de la Physique, Campus La Doua-LyonTech, 69621 Villeurbanne (Lyon), France.
Séverine Gomès
Affiliation:
Centre de Thermique de Lyon, CNRS-INSA de Lyon-UCBL, 9 rue de la Physique, Campus La Doua-LyonTech, 69621 Villeurbanne (Lyon), France.
Stéphane Lefèvre
Affiliation:
Centre de Thermique de Lyon, CNRS-INSA de Lyon-UCBL, 9 rue de la Physique, Campus La Doua-LyonTech, 69621 Villeurbanne (Lyon), France.
Pierre-Olivier Chapuis
Affiliation:
Centre de Thermique de Lyon, CNRS-INSA de Lyon-UCBL, 9 rue de la Physique, Campus La Doua-LyonTech, 69621 Villeurbanne (Lyon), France.
Get access

Abstract

Scanning Thermal Microscopy measurements with a resistive microprobe electrically heated were performed for different probe temperatures, for probe free in air and in contact with various specimens. The measured relative difference of Joule power dissipated in the probe when tip is in contact with a sample and when it is free in air is studied for different magnitude of the electrical current that heats the probe. A variation of this signal, never outlined before, is observed. A predictive modeling is used to explain these results and identify from the experimental data the global thermal conductance of the probe-sample thermal exchange for experiments performed in ambient conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lefèvre, S., Volz, S. and Chapuis, P.-O., International journal of heat and mass transfer 49(1), 251258 (2006).CrossRefGoogle Scholar
Felts, J. R., Somnath, S., Ewoldt, R. H. and King, W. P., Nanotechnology 23(21), 215301 (2012).CrossRefGoogle Scholar
Miranda, P., Xu, L., Shen, Y. and Salmeron, M., Physical review letters 81(26), 58765879 (1998).CrossRefGoogle Scholar
He, M., Blum, A. S., Aston, D. E., Buenviaje, C., Overney, R. M. and Luginbühl, R., The Journal of Chemical Physics 114, 1355 (2001).CrossRefGoogle Scholar
Dinwiddie, R., Pylkki, R. and West, P., Thermal conductivity 22, 668–668 (1993).Google Scholar
Lefèvre, S., Volz, S., Saulnier, J.-B., Fuentes, C. and Trannoy, N., Review of scientific instruments 74(4), 24182423 (2003).CrossRefGoogle Scholar
Carslaw, H. and Jaeger, J., Conduction of Heat in Solids (1959).Google Scholar
David, L., Gomes, S. and Raynaud, M., Journal of Physics D: Applied Physics 40(14), 4337 (2007).CrossRefGoogle Scholar
Taine, J. and Petit, J.-P., Transferts thermiques, p.399. (Dunod, 2003).Google Scholar
Gomes, S., Trannoy, N., Grossel, P., Depasse, F., Bainier, C. and Charraut, D., International journal of thermal sciences 40(11), 949958 (2001).CrossRefGoogle Scholar
Majumdar, A., Annual review of materials science 29(1), 505585 (1999).CrossRefGoogle Scholar
Gomes, S., David, L., Lysenko, V., Descamps, A., Nychyporuk, T. and Raynaud, M., Journal of Physics D: Applied Physics 40(21), 6677 (2007).CrossRefGoogle Scholar
Luo, K., Shi, Z., Varesi, J. and Majumdar, A., Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 15(2), 349360 (1997).CrossRefGoogle Scholar