Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T06:58:00.230Z Has data issue: false hasContentIssue false

A chemomechanical coupling model for oxidation and stress evolution in ZrB2–SiC

Published online by Cambridge University Press:  05 January 2017

Hailong Wang
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
Shengping Shen*
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China
*
a) Address all correspondence to this author. e-mail: sshen@mail.xjtu.edu.cn
Get access

Abstract

A chemomechanical coupling model is presented in the temperature range of 1200–1800 °C based on the microstructure during oxidation of ZrB2–SiC. The model includes the interaction of the oxidation rate and the mechanical stress. The stress is generated due to the constraint from the substrate to the lateral growth. The generated stress results in the shrink of the pores in the oxide. At the outer glassy layer surface, the boundary layer evaporation is adopted to describe the evaporation rate. Using the coupling model, the evolutions of the oxide layer thickness, weight gain, pore radius, and stress in both the oxide and substrate are provided, and the theoretical calculated results agree well with the reported experimental results. The results reveal large stress in the oxide layer during the oxidation process. By comparing the results of ZrB2 with different volume fractions of SiC, it is found that ZrB2 with higher volume fraction of SiC has more excellent oxidation resistance and smaller stress.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Yanchun Zhou

References

REFERENCES

Upadhya, K., Yang, J-M., and Hoffman, W.P.: Materials for ultrahigh temperature structural applications. Am. Ceram. Soc. Bull. 76(12), 51 (1997).Google Scholar
Levine, S.R., Opila, E.J., Halbig, M.C., Kiser, J.D., Singh, M., and Salem, J.A.: Evaluation of ultra-high temperature ceramics for aeropropulsion use. J. Eur. Ceram. Soc. 22(14), 2757 (2002).CrossRefGoogle Scholar
Chamberlain, A., Fahrenholtz, W., Hilmas, G., and Ellerby, D.: Oxidation of ZrB2–SiC ceramics under atmospheric and reentry conditions. Refract. Appl. Trans. 1(2), 1 (2005).Google Scholar
Monteverde, F.: The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corros. Sci. 47(8), 2020 (2005).CrossRefGoogle Scholar
Savino, R., Fumo, M.D.S., Paterna, D., and Serpico, M.: Aerothermodynamic study of UHTC-based thermal protection systems. Aerosp. Sci. Technol. 9(2), 151 (2005).Google Scholar
Monti, R., Stefano Fumo, M.D., and Savino, R.: Thermal shielding of a reentry vehicle by ultra-high-tempreature ceramic materials. J. Thermophys. Heat Transfer 20(3), 500 (2006).CrossRefGoogle Scholar
Monteverde, F. and Scatteia, L.: Resistance to thermal shock and to oxidation of metal diborides-SiC ceramics for aerospace application. J. Am. Ceram. Soc. 90(4), 1130 (2007).CrossRefGoogle Scholar
Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A.: Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90(5), 1347 (2007).CrossRefGoogle Scholar
Tandon, R., Dumm, H.P., Corral, E.L., Loehman, R.E., and Kotula, P.G.: Ultra high temperature ceramics for hypersonic vehicle applications. In Technical Report No. SAND 2006-2925 (Sandia National Laboratories, Albuquerque, New Mexico, USA, 2006).Google Scholar
Tripp, W. and Graham, H.: Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800° to 1500 °C. J. Electrochem. Soc. 118(7), 1195 (1971).CrossRefGoogle Scholar
Fahrenholtz, W.G.: The ZrB2 volatility diagram. J. Am. Ceram. Soc. 88(12), 3509 (2005).CrossRefGoogle Scholar
Kuriakose, A.K. and Margrave, J.: The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J. Electrochem. Soc. 111(7), 827 (1964).Google Scholar
Berkowitz-Mattuck, J.B.: High-temperature oxidation III. Zirconium and hafnium diborides. J. Electrochem. Soc. 113(9), 908 (1966).Google Scholar
Tripp, W., Davis, H., and Graham, H.: Effect of an SiC addition on the oxidation of ZrB2 . Am. Ceram. Soc. Bull. 52(8), 612 (1973).Google Scholar
Monteverde, F. and Bellosi, A.: Oxidation of ZrB2-based ceramics in dry air. J. Electrochem. Soc. 150(11), B552 (2003).CrossRefGoogle Scholar
Hu, P., Guolin, W., and Wang, Z.: Oxidation mechanism and resistance of ZrB2–SiC composites. Corros. Sci. 51(11), 2724 (2009).CrossRefGoogle Scholar
Han, W.B., Hu, P., Zhang, X.H., Han, J.C., and Meng, S.H.: High-temperature oxidation at 1900 °C of ZrB2xSiC ultrahigh-temperature ceramic composites. J. Am. Ceram. Soc. 91(10), 3328 (2008).CrossRefGoogle Scholar
Monteverde, F. and Bellosi, A.: Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates. Solid State Sci. 7(5), 622 (2005).CrossRefGoogle Scholar
Hwang, S.S., Vasiliev, A.L., and Padture, N.P.: Improved processing and oxidation-resistance of ZrB2 ultra-high temperature ceramics containing SiC nanodispersoids. Mater. Sci. Eng., A 464(1), 216 (2007).Google Scholar
Monteverde, F.: Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2 . Appl. Phys. A 82(2), 329 (2006).Google Scholar
Zhu, S., Fahrenholtz, W.G., and Hilmas, G.E.: Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics. J. Eur. Ceram. Soc. 27(4), 2077 (2006).CrossRefGoogle Scholar
Karlsdottir, S.N., Halloran, J.W., and Henderson, C.E.: Convection patterns in liquid oxide films on ZrB2–SiC composites oxidized at a high temperature. J. Am. Ceram. Soc. 90(9), 2863 (2007).Google Scholar
Karlsdottir, S.N. and Halloran, J.W.: formation of oxide scales on zirconium diboride–silicon carbide composites during oxidation: Relation of subscale recession to liquid oxide flow. J. Am. Ceram. Soc. 91(11), 3652 (2008).CrossRefGoogle Scholar
Rezaie, A., Fahrenholtz, W.G., and Hilmas, G.E.: Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C. J. Eur. Ceram. Soc. 27(6), 2495 (2007).Google Scholar
Han, J., Hu, P., Zhang, X., and Meng, S.: Oxidation behavior of zirconium diboride–silicon carbide at 1800 °C. Scr. Mater. 57(9), 825 (2007).CrossRefGoogle Scholar
Tian, C., Gao, D., Zhang, Y., Xu, C., Song, Y., and Shi, X.: Oxidation behaviour of zirconium diboride–silicon carbide ceramic composites under low oxygen partial pressure. Corros. Sci. 53(11), 3742 (2011).Google Scholar
Rezaie, A., Fahrenholtz, W.G., and Hilmas, G.E.: Oxidation of zirconium diboride–silicon carbide at 1500 °C at a low partial pressure of oxygen. J. Am. Ceram. Soc. 89(10), 3240 (2006).CrossRefGoogle Scholar
Williams, P.A., Sakidja, R., Perepezko, J.H., and Ritt, P.: Oxidation of ZrB2–SiC ultra-high temperature composites over a wide range of SiC content. J. Eur. Ceram. Soc. 32(14), 3875 (2012).CrossRefGoogle Scholar
Opila, E.J. and Halbig, M.C.: Oxidation of ZrB2–SiC. Ceram. Eng. Sci. Proc. 22(3), 221 (2001).CrossRefGoogle Scholar
Han, J., Hu, P., Zhang, X., Meng, S., and Han, W.: Oxidation-resistant ZrB2–SiC composites at 2200 °C. Compos. Sci. Technol. 68(3), 799 (2008).Google Scholar
Zhang, X-H., Hu, P., and Han, J-C.: Structure evolution of ZrB2–SiC during the oxidation in air. J. Mater. Res. 23(7), 1961 (2008).CrossRefGoogle Scholar
Bargeron, C.B., Benson, R.C., Jette, A.N., and Phillips, T.E.: Oxidation of hafnium carbide in the temperature range 1400° to 2060 °C. J. Am. Ceram. Soc. 76(4), 1040 (1993).CrossRefGoogle Scholar
Li, Q., Dong, S., Wang, Z., He, P., Zhou, H., Yang, J., Wu, B., and Hu, J.: Fabrication and properties of 3-D Cf/SiC-ZrC composites, using ZrC precursor and polycarbosilane. J. Am. Ceram. Soc. 95(4), 1216 (2012).CrossRefGoogle Scholar
Zhao, L., Jia, D., Duan, X., Yang, Z., and Zhou, Y.: Oxidation of ZrC–30 vol% SiC composite in air from low to ultrahigh temperature. J. Eur. Ceram. Soc. 32(4), 947 (2012).CrossRefGoogle Scholar
Wang, X.F., Liu, J.C., Hou, F., Hu, J.D., Sun, X., and Zhou, Y-C.: Synthesis of ZrC–SiC powders from hybrid liquid precursors with improved oxidation resistance. J. Am. Ceram. Soc. 98(1), 197 (2015).Google Scholar
Parthasarathy, T., Rapp, R., Opeka, M., and Kerans, R.: A model for the oxidation of ZrB2, HfB2 and TiB2 . Acta Mater. 55(17), 5999 (2007).CrossRefGoogle Scholar
Parthasarathy, T., Rapp, R., Opeka, M., and Cinibulk, M.: Modeling oxidation kinetics of SiC-containing refractory diborides. J. Am. Ceram. Soc. 95(1), 338 (2012).CrossRefGoogle Scholar
Evans, U.: The mechanism of oxidation and tarnishing. Trans. Electrochem. Soc. 91(1), 547 (1947).Google Scholar
Stringer, J.: Stress generation and relief in growing oxide films. Corros. Sci. 10(7), 513 (1970).CrossRefGoogle Scholar
Tolpygo, V. and Clarke, D.: Competition between stress generation and relaxation during oxidation of an Fe–Cr–Al–Y alloy. Oxid. Met. 49(1–2), 187 (1998).CrossRefGoogle Scholar
Schütze, M.: Protective Oxide Scales and Their Breakdown (Wiley, Chichester, 1997).Google Scholar
Bedworth, R. and Pilling, N.: The oxidation of metals at high temperatures. J. Inst. Met. 29(3), 529 (1923).Google Scholar
Rhines, F. and Wolf, J.: The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel. Metall. Trans. 1(6), 1701 (1970).Google Scholar
Clarke, D.R.: The lateral growth strain accompanying the formation of a thermally grown oxide. Acta Mater. 51(5), 1393 (2003).CrossRefGoogle Scholar
Panicaud, B., Grosseau-Poussard, J., and Dinhut, J.: General approach on the growth strain versus viscoplastic relaxation during oxidation of metals. Comput. Mater. Sci. 42(2), 286 (2008).CrossRefGoogle Scholar
Zhang, Y., Zhang, X., Tu, S-T., and Xuan, F.: Analytical modeling on stress assisted oxidation and its effect on creep response of metals. Oxid. Met. 82(3–4), 311 (2014).CrossRefGoogle Scholar
Maharjan, S., Zhang, X., Xuan, F., Wang, Z., and Tu, S.: Residual stresses within oxide layers due to lateral growth strain and creep strain: Analytical modeling. J. Appl. Phys. 110(6), 063511 (2011).CrossRefGoogle Scholar
Dong, X., Feng, X., and Hwang, K-C.: Oxidation stress evolution and relaxation of oxide film/metal substrate system. J. Appl. Phys. 112(2), 023502 (2012).CrossRefGoogle Scholar
Grosseau-Poussard, J-L., Panicaud, B., and Ben Afia, S.: Modelling of stresses evolution in growing thermal oxides on metals. A methodology to identify the corresponding mechanical parameters. Comput. Mater. Sci. 71, 47 (2013).CrossRefGoogle Scholar
Panicaud, B., Grosseau-Poussard, J., and Dinhut, J.: On the growth strain origin and stress evolution prediction during oxidation of metals. Appl. Surf. Sci. 252(16), 5700 (2006).CrossRefGoogle Scholar
Maharjan, S., Zhang, X., and Wang, Z.: Effect of oxide growth strain in residual stresses for the deflection test of single surface oxidation of alloys. Oxid. Met. 77(1–2), 93 (2012).CrossRefGoogle Scholar
Krishnamurthy, R. and Srolovitz, D.J.: Stress distributions in growing oxide films. Acta Mater. 51(8), 2171 (2003).CrossRefGoogle Scholar
Krishnamurthy, R. and Srolovitz, D.J.: Stress distributions in growing polycrystalline oxide films. Acta Mater. 52(13), 3761 (2004).CrossRefGoogle Scholar
Zhou, H., Qu, J., and Cherkaoui, M.: Stress–oxidation interaction in selective oxidation of Cr–Fe alloys. Mech. Mater. 42(1), 63 (2010).CrossRefGoogle Scholar
Dong, X., Fang, X., Feng, X., and Hwang, K.C.: Diffusion and stress coupling effect during oxidation at high temperature. J. Am. Ceram. Soc. 96(1), 44 (2013).CrossRefGoogle Scholar
Wang, H., Suo, Y., and Shen, S.: Reaction–diffusion–stress coupling effect in inelastic oxide scale during oxidation. Oxid. Met. 83(5–6), 507 (2015).Google Scholar
Wang, H. and Shen, S.: A chemomechanical model for stress evolution and distribution in the viscoplastic oxide scale during oxidation. J. Appl. Mech. 83(5), 051008 (2016).CrossRefGoogle Scholar
Zhou, Z., Peng, X., and Wei, Z.: A thermo-chemo-mechanical model for the oxidation of zirconium diboride. J. Am. Ceram. Soc. 98(2), 629 (2015).Google Scholar
Panicaud, B., Grosseau-Poussard, J-L., Retraint, D., Guérain, M., and Li, L.: On the mechanical effects of a nanocrystallisation treatment for ZrO2 oxide films growing on a zirconium alloy. Corros. Sci. 68, 263 (2013).CrossRefGoogle Scholar
Carney, C.M., Mogilvesky, P., and Parthasarathy, T.A.: Oxidation behavior of zirconium diboride silicon carbide produced by the spark plasma sintering method. J. Am. Ceram. Soc. 92(9), 2046 (2009).CrossRefGoogle Scholar
Li, W., Li, D., Zhang, C., and Fang, D.: Modelling the effect of temperature and damage on the fracture strength of ultra-high temperature ceramics. Int. J. Fract. 176(2), 181 (2012).CrossRefGoogle Scholar
Fogaing, E.Y., Huger, M., and Gault, C.: Elastic properties and microstructure: Study of two fused cast refractory materials. J. Eur. Ceram. Soc. 27(2), 1843 (2007).CrossRefGoogle Scholar
Lugovy, M., Slyunyayev, V., Orlovskaya, N., Mitrentsis, E., Aneziris, C., Graule, T., and Kuebler, J.: Temperature dependence of elastic properties of ZrB2–SiC composites. Ceram. Int. 42(2), 2439 (2016).CrossRefGoogle Scholar
Noda, N.: Thermal stresses intensity factor for functionally gradient plate with an edge crack. J. Therm. Stresses. 20(3–4), 373 (1997).CrossRefGoogle Scholar
Zimmermann, J.W., Hilmas, G.E., and Fahrenholtz, W.G.: Thermal shock resistance of ZrB2 and ZrB2–30% SiC. Mater. Chem. Phys. 112(1), 140 (2008).CrossRefGoogle Scholar
French, J.D., Zhao, J., Harmer, M.P., Chan, H.M., and Miller, G.A.: Creep of duplex microstructures. J. Am. Ceram. Soc. 77(11), 2857 (1994).CrossRefGoogle Scholar
Talmy, I., Zaykoski, J., and Martin, C.: Flexural creep deformation of ZrB2/SiC ceramics in oxidizing atmosphere. J. Am. Ceram. Soc. 91(5), 1441 (2008).CrossRefGoogle Scholar
Hu, S. and Shen, S.: Non-equilibrium thermodynamics and variational principles for fully coupled thermal–mechanical–chemical processes. Acta Mech. 224(12), 2895 (2013).CrossRefGoogle Scholar
Li, J.: Chemical potential for diffusion in a stressed solid. Scr. Metall. 15(1), 21 (1981).CrossRefGoogle Scholar
Swaminathan, N., Qu, J., and Sun, Y.: An electrochemomechanical theory of defects in ionic solids. I. Theory. Philos. Mag. 87(11), 1705 (2007).CrossRefGoogle Scholar
Suo, Y. and Shen, S.: General approach on chemistry and stress coupling effects during oxidation. J. Appl. Phys. 114(16), 164905 (2013).Google Scholar
Golan, O., Arbel, A., Eliezer, D., and Moreno, D.: The applicability of Norton’s creep power law and its modified version to a single-crystal superalloy type CMSX-2. Mater. Sci. Eng., A 216(1), 125 (1996).CrossRefGoogle Scholar
Dormieux, L., Kondo, D., and Ulm, F-J.: Microporomechanics (John Wiley & Sons, Chichester, U.K., 2006).CrossRefGoogle Scholar