Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T06:50:08.521Z Has data issue: false hasContentIssue false

Chemical redox reactions and extended PXRD-characterization of triphylite-type compounds AM0.5Fe0.5PO4 (A = Li, Na; M = Mn, Co)

Published online by Cambridge University Press:  02 May 2017

Jessica Bauer
Affiliation:
Anorganische Festkörperchemie, Universität des Saarlandes, Campus C4.1, 66123 Saarbrücken, Germany
Robert Haberkorn*
Affiliation:
Anorganische Festkörperchemie, Universität des Saarlandes, Campus C4.1, 66123 Saarbrücken, Germany
Guido Kickelbick
Affiliation:
Anorganische Festkörperchemie, Universität des Saarlandes, Campus C4.1, 66123 Saarbrücken, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: haberkorn@mx.uni-saarland.de

Abstract

The alkaline content of mixed transition metal phosphates Li(1−yzNay·zM0.5Fe0.5PO4 (M = Mn, Co; 0 ≤ y < 1; 0.5 ≤ z ≤ 1) was determined by powder X-ray diffraction data by means of Rietveld analysis and multi-fraction models. The compounds LiM0.5Fe0.5PO4 were synthesized via solid-state reactions. Chemical extraction of Li with bromine in acetonitrile yielded well-crystalline Li0.5M0.5Fe0.5PO4. Subsequent reduction with Na2S in acetonitrile gave a product with a triphylite-type phase of the average composition Li0.5Na0.5M0.5Fe0.5PO4 showing a broad distribution of Li-to-Na-ratios. For Rietveld refinements a set of 11 fractions Li1−yNayM0.5Fe0.5PO4 was used to represent the triphylite-type phase and its composition fluctuation. To obtain samples with compositions close to NazM0.5Fe0.5PO4 (z = 0.5 or z = 1) up to two additional cycles of chemical oxidation and reduction were required. Because of a complex distribution of Li and Na within the triphylite-type phase a model of 121 fractions of Li(1−yzNay·zM0.5Fe0.5PO4 was developed to enable proper Rietveld refinements. The scaling factors of the 121 fractions were constrained by a bimodal bivariate normality. The evaluation of the pattern revealed a type of passivation, preventing the compound from complete oxidation or reduction of Fe for higher cycle numbers. Hence, no completely Li-free samples could be obtained.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avdeev, M., Mohamed, Z., Ling, C. D., Lu, J., Tamaru, M., Yamada, A., and Barpanda, P. (2013). “Magnetic Structures of NaFePO4 Maricite and Triphylite Polymorphs for Sodium-Ion Batteries,” Inorg. Chem. 52, 86858693.CrossRefGoogle ScholarPubMed
Beck, H. P., Douiheche, M., Haberkorn, R., and Kohlmann, H. (2006). “Synthesis and characterisation of chloro-vanadato-apatites M 5(VO4)3Cl (M = Ca, Sr, Ba),” Solid State Sci. 8, 6470.Google Scholar
Bratsch, S. G. (1989). “Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K,” J. Phys. Chem. Ref. Data 18, 121.Google Scholar
Bruker AXS (2014). TOPAS V5: General Profile and Structure Analysis Software for Powder Diffraction Data – User's MANUAL (Bruker AXS, Karlsruhe, Germany).Google Scholar
Chaloner-Gill, B., Shackle, D. R., and Andersen, T. N. (2000). “A vanadium-based cathode for lithium-ion batteries,” J. Electrochem. Soc. 147, 35753578.Google Scholar
Cheary, R. W., Coelho, A. A., and Cline, J. P. (2004). “Fundamental parameters line profile fitting in laboratory diffractometers,” J. Res. Natl. Inst. Stand. Technol. 109, 125.Google Scholar
Delacourt, C., Laffont, L., Bouchet, R., Wurm, C., Leriche, J. B., Morcrette, M., Tarascon, J. M., and Masquelier, C. (2005). “Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials,” J. Electrochem. Soc. 152, A913A921.Google Scholar
Drozhzhin, O. A., Sumanov, V. D., Karakulina, O. M., Abakumov, A. M., Hadermann, J., Baranov, A. N., Stevenson, K. J., and Antipov, E. V. (2016). “Switching between solid solution and two-phase regimes in the Li1−xFe1−yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study,” Electrochim. Acta 191, 149157.CrossRefGoogle Scholar
Giner, M., Roddatis, V., López, C. M., and Kubiak, P. (2016). “Communication–electrochemical evaluation of MnxFe1−xPO4 (0 ≤ x ≤ 1) cathode materials for na-ion batteries,” J. Electrochem. Soc. 163, A650A653.CrossRefGoogle Scholar
Haberkorn, R., Bauer, J., and Kickelbick, G. (2014). “Chemical sodiation of V2O5 by Na2S,” Z. Anorg. Allg. Chem. 640, 31973202.Google Scholar
Kaus, M., Issac, I., Heinzmann, R., Doyle, S., Mangold, S., Hahn, H., Chakravadhanula, V. S. K., Kübel, C., Ehrenberg, H., and Indris, S. (2014). “Electrochemical delithiation/relithiation of LiCoPO4: a two-step reaction mechanism investigated by in situ x-ray diffraction, in situ x-ray absorption spectroscopy, and ex situ 7Li/31P NMR spectroscopy,” J. Phys. Chem. C 118, 1727917290.Google Scholar
Lee, K. T., Ramesh, T. N., Nan, F., Botton, G., and Nazar, L. F. (2011). “Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries,” Chem. Mater. 23, 35933600.Google Scholar
Lepage, D., Michot, C., Liang, G., Gauthier, M., and Schougaard, S. B. (2011). “A soft chemistry approach to coating of LiFePO4 with a conducting polymer,” Angew. Chem. Int. Ed. 50, 68846887.Google Scholar
Maccario, M., Croguennec, L., Le Cras, F., and Delmas, C. (2008). “Electrochemical performances in temperature for a C-containing LiFePO4 composite synthesized at high temperature,” J. Power Sources 183, 411417.Google Scholar
MATLAB (2014). Release 2014b, The MathWorks, Inc., Natick, Massachusetts, USA.Google Scholar
Mizushima, K., Jones, P. C., Wiseman, P. J., and Goodenough, J. B. (1980). “A new cathode material for batteries of high energy density,” Mater. Res. Bull. 15, 783789.Google Scholar
Oh, S.-M., Myung, S.-T., Hassoun, J., Scrosati, B., and Sun, Y.-K. (2012). “Reversible NaFePO4 electrode for sodium secondary batteries,” Electrochem. Commun. 22, 149152.Google Scholar
Padhi, A. K., Nanjundaswamy, K. S., and Goodenough, J. B. (1997). “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries,” J. Electrochem. Soc. 144, 11881194.Google Scholar
Palomares, V., Serras, P., Villaluenga, I., Hueso, K. B., Carretero-Gonzalez, J., and Rojo, T. (2012). “Na-ion batteries, recent advances and present challenges to become low cost energy storage systems,” Energy Environ. Sci. 5, 58845901.Google Scholar
Prosini, P. P., Cento, C., Masci, A., and Carewska, M. (2014). “Sodium extraction from sodium iron phosphate with a Maricite structure,” Solid State Ion. 263, 18.Google Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. 22, 151152.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32, 751767.Google Scholar
Strobridge, F. C., Liu, H., Leskes, M., Borkiewicz, O. J., Wiaderek, K. M., Chupas, P. J., Chapman, K. W., and Grey, C. P. (2016). “Unraveling the complex delithiation mechanisms of olivine-type cathode materials, LiFe x Co1−x PO4 ,” Chem. Mater. 28, 36763690.Google Scholar
Supplementary material: File

Bauer supplementary material

Tables SI-I-IX and Figures SI-1-4

Download Bauer supplementary material(File)
File 1.3 MB