Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T04:18:06.568Z Has data issue: false hasContentIssue false

Trim Simulations and Possible Studies for Edge-on Ion Irradiation of Electron Microscope Specimens*

Published online by Cambridge University Press:  25 February 2011

Loren J. Thompson
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Charles W. Allen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Marcus C. Frischherz
Affiliation:
Also Atominstitut der Österreichischen Universitäten, Vienna, Austria
Mauro P. Otero
Affiliation:
Also Fundação de Tecnologia Industrial, Lorena-SP 12600, Brasil
Get access

Abstract

A TRIM code [1] has been modified to simulate a special technique, first described at the Spring 92 MRS Meeting [2], for in situ transmission electron microscope (TEM) experiments involving simultaneous ion irradiation, in which the resultant phenomena are observed as in a cross-section TEM specimen without further specimen preparation. Instead of ion-irradiating the film or foil specimen normal to the major surfaces and observing in plan view (i.e., in essentially the same direction), the specimen is irradiated edge-on (i.e., parallel to the major surfaces) and is observed normal to the depth direction of the irradiation. The results of calculations utilizing the modified TRIM code are presented for cases of 200 and 500 keV Co impinging onto the edge of Si films 200 and 600 nm thick. The limitations of the technique are discussed and the feasibility of experiments involving implantation of Co into Si and the formation of COSi2, which employ this technique, are briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U. S. Department of Energy, BES-Materials Sciences, under Contract W-31–109-Eng-38.

References

[1] Ziegler, J. F., Biersack, J. P. and Littmark, U., in The Stopping and Range of Ions in Solids, ed. Ziegler, J. F. (Pergamon, New York, 1985).Google Scholar
[2] Otero, M. P. and Allen, C. W., Mat. Res. Soc. Symp. Proc. 268 (1992) 337.Google Scholar
[3] Ziegler, J. F., private communication.Google Scholar
[4] White, A. E., Short, K. T., Dynes, R. C., Garno, J. P. and Gibson, J. M., Appl Phys. Lett. 50(1987) 9597.Google Scholar
[5] White, A. E., Short, K. T., Dynes, R. C., Gibson, J. M. and Hull, R., Mat. Res. Soc. Symp. Proc. 100 (1988) 315.Google Scholar
[6] Van Ommen, A. H., Bulle-üeuwma, C. W. T., Ottenheim, J. J. M. and Theunissen, A. M. L., J. Appl Phys. 67 (1990) 17671778.Google Scholar
[7] Fichtner, P. F. P., Jäger, W., Radermacher, K. and Mantl, S., Nucl. Instrum. Methods B59/60 (1991) 632636.Google Scholar
[8] Jebasinski, R., Mantl, S., Radermacher, K., Fichtner, P., Jäger, W. and Buchal, Ch., Mat. Res. Soc. Symp. Proc. 201 (1991) 411416.Google Scholar
[9] Frank, W., Gösele, U., Mehrer, H. and Seeger, A., in Diffusion in Crystalline Solids. ed. by Murch, G. E. and Nowick, A. S.(Academic Press, New York, 1984).Google Scholar
[10] Hashimoto, K., Nakashima, H. and Hashimoto, K., Japan. J. Appl Phys. 27 (1988) 1776.sCrossRefGoogle Scholar