Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T22:45:42.177Z Has data issue: false hasContentIssue false

Self-cleaning Cotton Fabrics

Published online by Cambridge University Press:  01 February 2011

Kaihong Qi
Affiliation:
04901597R@polyu.edu.hk, The Hong Kong Polytechnic University, Institute of Textiles & Clothing, Hung Hom, Kowloon,Hong Kong, Hong Kong, N/A, N/A, Hong Kong, 852-27666454, 852-27731432
Walid A Daoud
Affiliation:
Walid.Daoud@inet.polyu.edu.hk, The Hong Kong Polytechnic University, Institute of Textiles & Clothing, Hung Hom,Kowloon, Hong Kong, Hong Kong, N/A, N/A, China, People's Republic of
John Xin
Affiliation:
tcxinjh@inet.polyu.edu.hk, The Hong Kong Polytechnic University, Institute of Textiles & Clothing, Hung Hom,Kowloon, Hong Kong, Hong Kong, N/A, N/A, China, People's Republic of
C.L. Mak
Affiliation:
apaclmak@polyu.edu.hk, The Hong Kong Polytechnic University, Department of Applied Physics, Hung Hom,Kowloon, Hong Kong, Hong Kong, N/A, N/A, China, People's Republic of
Get access

Abstract

Nanocrystalline anatase titanium dioxide films were successfully produced on cotton fabrics from alkoxide solutions under ambient pressure using the low temperature sol-gel process. At a temperature as low as 40°C, only anatase phase formed from X-ray diffraction spectroscopy (XRD). Field scanning electron microscopy (FESEM) images show the formation of uniform continuous films of titanium dioxide on cotton fabrics. The self-cleaning properties of these fabrics were evaluated by measuring anti-bacterial activities and the decomposition of a colorant Neolan Blue 2G. The results indicated that anatase treated cotton fabrics exhibited good self-cleaning performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nosaka, Y., Koeuma, K., Ushida, K., Kira, A., Langmuir, 12, 736 (1996).Google Scholar
2. Fujihira, M., Satoh, Y. and Osa, T., Nature, 293, 206 (1981).Google Scholar
3. Hashimoto, K., Kawai, T. and Sakata, T., J. Phys. Chem., 88, 4083 (1984).Google Scholar
4. Fukayama, S., Kawamura, K., Saito, T., Iyoda, T., Hashimoto, K., Fujishima, A., in: Proceedings of the Extended Abstracts of the 187th Meeting of the Electrochemical Society, The Electrochemical Society, Pennington, NJ, USA, 1995.Google Scholar
5. Negishi, N., Iyoda, T., Hashimoto, K. and Fujishima, A., Chem. Lett., 1995, 841 (1995).Google Scholar
6. Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto, K. and Fujishima, A., J. Electroanal. Chem., 415, 183 (1996).Google Scholar
7. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. and Fujishima, A., J. Photochem. Photobiol. A: Chem., 106, 51 (1997).Google Scholar
8. Paz, Y., Luo, Z., Rabenberg, L. and Heller, A., J. Mater. Res., 10, 2842 (1995).Google Scholar
9. Anpo, M., Shima, T., Kodma, S., Kubokawa, Y., J.Phys. Chem. B, 91, 4305 (1987).Google Scholar
10. Kato, K., Tsuzuki, A., Taoda, H., Torii, Y., Kato, T. and Butsugan, Y., J. Mater. Sci., 29, 5911 (1994).Google Scholar
11. Matsuda, A., Kotani, Y., Kogure, T., Tatsumisago, M. and Minami, T., J. Am. Cerm. Soc., 83, 229 (2000).Google Scholar
12. Matsuda, A., Matoda, T., Kogure, T., Tadanaga, K., Minami, T. and Tatsumisago, M., J. Sol-Gel Sci. Technol., 27, 61 (2003).Google Scholar
13. Matsuda, A., Matoda, T., Tadanaga, K., Minami, T. and Tatsumisago, M., J. Am. Cerm. Soc., 88, 1421 (2005).Google Scholar
14. Imai, H., Hirashima, H., J. Am. Cerm. Soc., 82, 2301 (1999).Google Scholar
15. Hu, Y., Yuan, C. W., J. Cryst. Growth, 274, 563 (2005).Google Scholar
16. Peblow, M., Nature, 429, 620 (2004).Google Scholar
17. Daoud, W.A. and Xin, J. H., J. Am. Ceram. Soc., 87, 953 (2004).Google Scholar
18. Bozzi, A., Yuranova, T. and Kiwi, J., J. Photochem. Photobiol. A: Chem., 172, 27 (2005).Google Scholar
19. Bozzi, A., Yuranova, T., Guasaquillo, I., Laub, D. and Kiwi, J., J. Photochem. Photobio. A: Chem., 174, 156 (2005).Google Scholar
20. Meilert, K. T., Laub, D., Kiwi, J., J. Molec. Catal. A, 237, 101 (2005).Google Scholar
21. Yuranova, T., Mosteo, R., Bandata, J., Laub, D., Kiwi, J., J. Molec. Catal. A, 244, 160 (2006).Google Scholar
22. Daoud, W. A., Xin, J. H. and Zhang, Y. H., Surf. Sci., 599, 69 (2005).Google Scholar
23. Zhang, H. and Banfield, J. F., J. Phys. Chem. B, 104, 3481 (2000).Google Scholar
24. Miao, L., Tanemura, S., Kondo, Y., Iwata, M., Toh, S., Kaneko, K., Appl. Surf. Sci., 238, 125 (2000).Google Scholar
25. Neely, A. N. and Maley, M. P., J. Clin. Microbiol, 38, 724 (2000).Google Scholar
26. Daoud, W.A. and Xin, J. H., J. sol-gel. Sci.Tech., 29, 25 (2004).Google Scholar