Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T18:13:13.245Z Has data issue: false hasContentIssue false

Ferroelectric Domain Structure and Local Piezoelectric Properties of Sol-Gel Derived Pb(Zr1-xTix)O3 Films

Published online by Cambridge University Press:  01 February 2011

I. K. Bdikin
Affiliation:
Department of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810–193 Aveiro, Portugal
V. V. Shvartsman
Affiliation:
Department of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810–193 Aveiro, Portugal
A. L. Kholkin
Affiliation:
Department of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810–193 Aveiro, Portugal
Seung-Hyun Kim
Affiliation:
INOSTEK Inc., Gyeonggi Technopark, 1271–11 Sa 1, Sangnok, Ansan, Gyeonggi 425–791, Korea
Get access

Abstract

High-resolution domain studies are performed on Pb(Zr1-xTix)O3 (PZT) films of different thicknesses and compositions (x=0.30, 0.48, and 0.70) by piezoresponse force microscopy (PFM). Depending on the composition, the orientation of the films is varied from purely (111) (related to the orientation of Pt bottom electrode) to a more random texture. Statistical processing of the obtained domain images is used to analyze the correlation between the composition of the films and their nanoscale piezoelectric properties. It is shown that the virgin (unpoled) films possess large piezoelectric activity comparable to that after local poling (self-polarization effect). This corresponds to a clear predominance of the domains with polarization oriented from the free surface of the film to the bottom electrode. Both the average piezoelectric signal and half-width of the piezoelectric histograms depend on the composition and thickness of the films. The largest local piezoelectric coefficient and the broadest distribution are found for tetragonal (x=0.70) films with almost pure (111) texture. The results are discussed in terms of texture and PFM instrumentation effects on local piezoelectric measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Noheda, B., Cox, D. E., Shirane, G., Gonzalo, J. A., Cross, L. E., and Park, S.-E., Appl. Phys. Lett., 74, 2059 (1999);Google Scholar
Noheda, B., Gonzalo, J. A., Cross, L.E., Guo, R., Park, S.-E., Cox, D. E., and Shirane, G., Phys. Rev. B 61, 8687 (2000).Google Scholar
2. Du, X.-H., Zheng, J., Belegundu, U., and Uchino, K., Appl. Phys. Lett 72, 2421 (1998).Google Scholar
3. Goh, W. C., Xu, S. Y., Wang, S. J., and Ong, C. K., J. Appl. Phys. 89, 4497 (2001).Google Scholar
4. Xu, F., Trolier-McKinstry, S., Ren, W., Xu, B., Xie, Z.-L., and Hemker, K. J., J. Appl. Phys. 89, 1336 (2001).Google Scholar
5. Rogan, R. C., Stundag, E., Clausen, B., and Daymond, M. R., J. Appl. Phys. 93, 4104 (2003).Google Scholar
6. Taylor, D. V. and Damjanovic, D., Appl. Phys. Lett 76, 1615 (2000);Google Scholar
Kim, D.-J., Maria, J.-P., Kingon, A. I., and Streiffer, S. K., J. Appl. Phys. 93 (2003) 5568.Google Scholar
7. PZT thick film data sheet, http://www.inostek.com.Google Scholar
8. Gruverman, A., Auciello, O., and Tokumoto, H., Annu. Rev. Mater. Sci. 28, 101 (1998).Google Scholar
9. Kholkin, A. L., Shvartsman, V. V., Emelyanov, A.Yu., Poyato, R., Calzada, M. L., and Pardo, L., Appl. Phys. Lett. 82, 2127 (2003).Google Scholar
10 Lim, J.-E., Park, D.-Y., Jeong, J. K., Darlinski, G., Kim, H. J., Hwang, Ch.S., Kim, S.-H., Koo, Ch.-Y., Woo, H.-J., Lee, D.-S., and Ha, J., Appl. Phys. Lett. 81, 3224 (2002).Google Scholar
11. Cheng, J., Zhu, W., Li, N., and Cross, L. E., J. Appl. Phys. 91, 5997 (2001).Google Scholar
12. Fe, L., Norga, G. J., Wouters, D. J., Mães, H. E., and Maes, G., J. Mater. Res. 16, 2499 (2001).Google Scholar
13. Gruverman, A., Appl. Phys. Lett. 75, 1452 (1999).Google Scholar
14. Kholkin, A. L., Brooks, K. G., Taylor, D. V., Hiboux, S., and Setter, N., Integrated Ferroelectrics 22, 525 (1998).Google Scholar
15. Kholkin, A., Ferroelectrics 221, 219 (1999).Google Scholar
16. Bruchhaus, R., Pitzer, D., Primig, R., Wersing, W.R., and Xu, Y., Integrated Ferroelectrics, 14, 141 (1997).Google Scholar
17. Hong, S., Woo, J., Shin, H., Jeon, J. U., Pak, Y. E., Colla, E. L., Setter, N., Kim, E., and No, K., J. Appl. Phys. 89, 1377 (2001).Google Scholar
18. Spierings, G. A. C. M., Dormans, G. J. M., Moors, W. G. J., Ulenaers, M. J. E., and Larsen, P. K., J. Appl. Phys. 78, 1926 (1995).Google Scholar
19. Ganpule, C. S., Nagarajan, V., Hill, B. K., Roytburd, A. L., Williams, E. D., Alpay, S. P., Roelofs, A., Waser, R., and Eng, L. M., J. Appl. Phys. 91, 1477 (2002).Google Scholar