Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T09:35:37.329Z Has data issue: false hasContentIssue false

Chemical stability of epoxy functionalizations of graphene: A density functional theory study

Published online by Cambridge University Press:  09 August 2013

Si Zhou
Affiliation:
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, U.S.A. School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, U.S.A.
Angelo Bongiorno
Affiliation:
School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, U.S.A.
Get access

Abstract

Density functional theory and statistical calculations are combined to address the chemical stability and structure of epoxy functionalizations of single-layer graphene. Our computations show that at oxidation levels of O:C<0.5, the Gibbs free energy of formation per epoxide amounts to about 0.6 eV, and the structure of the epoxy functionalizations presents local order and long-range disorder. The positive energy value indicates that in air at p=1 bar and room temperature, epoxy functionalizations of graphene are unstable and prone to spontaneous reduction. Our calculations show also that formation and release of O2 is a slow process whose kinetics is controlled by large energy barriers, the formation of very stable intermediate species, and unlikely electronic transitions.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brodie, B., Ann. Chim. Phys. 45, 351 (1855).Google Scholar
Park, S. and Ruoff, R. S., Nat. Nanotechnol. 4, 217 (2009).CrossRefGoogle Scholar
Hummers, W. S. and Offeman, R. E., J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., and Ruoff, R. S., Carbon 45, 1558 (2007).CrossRefGoogle Scholar
Hossain, M. Z., Johns, J. E., Bevan, K. H., Karmel, H. J., Liang, Y. T., Yoshimoto, S., Mukai, K., Koitaya, T., Yoshinobu, J., Kawai, M., Lear, A. M., Kesmodel, L. L., Tait, S. L., and Hersam, M. C., Nature Chem. 4, 305 (2012).CrossRefGoogle Scholar
Kim, S., Zhou, S., Hu, Y., Acik, M., Chabal, Y., Berger, C., de Heer, W., Bongiorno, A., and Riedo, E., Nature Mat. 11, 544 (2012).CrossRefGoogle Scholar
Boukhvalov, D. and Katsnelson, M., J. Am. Chem. Soc. 130, 10697 (2008).CrossRefGoogle Scholar
Yan, J.-A. and Chou, M. Y., Phys. Rev. B 82, 125403 (2010).CrossRefGoogle Scholar
Johari, P. and Shenoy, V., ACS Nano 5, 7640 (2011).CrossRefGoogle Scholar
Paci, J. T., Belytschko, T., and Schatz, G. C., J. Phys. Chem. C 111, 18099 (2007).CrossRefGoogle Scholar
Giannozzi, P. et al. ., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Bagri, A., Mattevi, C., Acik, M., Chabal, Y. J., Chhowalla, M., and Shenoy, V. B., Nature Chem. 2, 581 (2010).CrossRefGoogle Scholar
Zener, C., Proc. R. Soc. Lond. A 137, 696 (1932).CrossRefGoogle Scholar
Orellana, W., da Silva, A. J. R., and Fazzio, A., Phys. Rev. Lett. 90, 016103 (2003).CrossRefGoogle Scholar
Stull, D. R. and Prophet, H., JANAF Thermochemical Tables (U.S. National Bureau of Standards, Washington, D.C., ADDRESS, 1971).Google Scholar