Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T23:38:47.160Z Has data issue: false hasContentIssue false

Chemical bath deposition of nanocrystaline CdS and CdPbS layers and investigation of their photoconductivity

Published online by Cambridge University Press:  01 February 2011

Vilmos Rakovics*
Affiliation:
rakovics@mfa.kfki.hu, MTA MFA, Optoelectronic Devices, 29-33 Konkoly-Thege str., Budapest, N/A, H-1121, Hungary, 361-3922222/3532
Get access

Abstract

The investigation of photoconductive properties of chemical bath deposited (CBD) cadmium sulphide (CdS) layers was the main objective of this work. For completeness, the CdS layers were characterized using X-ray diffraction, scanning electron microscopy, optical absorption, DC electrical conductivity, photoconductivity measurements. It has been found that the CdS layers grown are hexagonal with (002) preferential orientation. The n-type CdS materials show 100–200 nm clusters consisting of 10–20 nm size crystallites. The optical band gap is 2.42-2.52 eV, which shows a red-shift to 2.34 eV upon heat treatment. The effect of Cu doping and co-deposition of CdS with PbS were also investigated. Dark conductivity was increased after heat treatment of pure CdS layers, and decreased in case of Cu doped samples. Photoconductive response time of Cu doped CdS and Cd(Pb)S samples were smaller than the response time of pure CdS samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Isshiki, M., Endo, T. and Masumot, K., J. Electrochem. Soc. 137 (1990), p. 2697.Google Scholar
2. Pintilie, L., Pentia, E., Pintilie, I. and Petre, D., Mat. Sci. Eng. B (Solid state Materials for Adv. Techn.) 44 (1997), p. 403.Google Scholar
3. Pintilie, L., Pentia, E., Pintilie, I., Botila, T. and Constantin, C., Appl. Phys. Lett. 76 (2000), 1890.Google Scholar
3. Pintilie, L., Pentia, E., Pintilie, I., Botila, T. and Constantin, C., Appl. Phys. Lett. 76 (2000), 1890.Google Scholar
4. Karanjai, M. K and Dasgupta, D., Thin Solid Films 155 (1987), p. 309.Google Scholar
4. Karanjai, M. K and Dasgupta, D., Thin Solid Films 155 (1987), p. 309.Google Scholar
5. Nair, M. T. S. and Nair, P. K., Solar Energy Mater. Sol. cells 15 (1987), p. 441.Google Scholar
6. Nair, P. K., Nair, M. T. S., Fernandez, A. and Ocampo, M., J. Phys. D: Appl. Phys. 22 (1989), p. 829.Google Scholar
7. Bube, R. H., Photoconductivity of solids., Wiley, NY (1960).Google Scholar
8. Sze, S. M., Physics of Semiconductor Devices, Vol.16, John Wiley and Sons Inc, 1981, p. 849.Google Scholar
9. Tomashyunas, R., Pyatrauskas, M., Vaitkus, Yu., Sinyus, Ya., Graska, R., Vlaskin, A., Sov. Phys. Semicond. (USA) 25, 623., Translation of Fiz. Tekh. Poluprovodn (USSR), 25, (1991), 1070.Google Scholar
10. Pentia, E., Pentilie, L., Tivarus, C., Pintilie, I. and Botila, T., Mat. Sci. Eng. 23 (2001), p. 80.Google Scholar
11. Gudaev, O. A. and Malinovaski, , Thin solid films 35 (1991), p. 198.Google Scholar
12. Bhushan, S. and Sharma, S. K., J. Phys. D Appl. Phys. 23 (1990), p. 909.Google Scholar
13. Bhushan, S. and Thakur, D., J. Mat. Sci. (Materials in Electronics) 3 (1992), p. 35.Google Scholar
14. Shrivastava, S. and Bhushan, S., Ind. J. Pure Appl. Phys. 34 (1996), p. 106.Google Scholar
15. Bhushan, S., Mukherjee, M. and Bose, P., Radiat. Eff. Defects Solids 153 (2001), p. 367.Google Scholar
16. Mukherjee, M., Bose, P. and Bhushan, S., Ind. J. Pure Appl. Phys. 39 (2001), p. 804.Google Scholar
17. Pentia, E., Draghici, V., Sarau, G., Mereu, B., Pintilie, L., Sava, F., Popescu, M. Google Scholar