Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T07:14:21.218Z Has data issue: false hasContentIssue false

Thermodynamic Analysis for the Solid-State Amorphization and Subsequent Crystallization of GaAs/Co

Published online by Cambridge University Press:  26 July 2012

F.-Y. Shiau
Affiliation:
Currently with Tze-Chang Foundation of Science and Technology, Semiconductor Research Center, Hsin-Chu, Taiwan, ROC
S.-L. Chen
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA.
M. Loomans
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA.
Y. A. Chang
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA.
Get access

Abstract

Phase equilibria along the CoGa-CoAs join were determined by DTA and metallography. On the basis of these data and the phase diagram of Co-Ga-As at 600 °C, thermodynamic values for the various phases along the GaAs-Co join were estimated. The Gibbs energy of the amorphous phase is approximated to be that of the supercooled liquid phase. These data were used to rationalize the amorphization process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shiau, F.-Y., PhD Thesis, University of Wisconsin, Madison, WI 53706, (1990).Google Scholar
2. Shiau, F.-Y. and Chang, Y. A., Presented at this Symposium at Annaheim, CA, April 29-May 1, 1991.Google Scholar
3. Shiau, F.-Y., Chen, S.-L., Loomans, M. and Chang, Y. A., J. Mater. Res., (1990), accepted for publication.Google Scholar
4. Shiau, F.-Y., Zuo, Y., Lin, J.-C. and Chang, Y. A., Z. Metallk., 80, 544 (1989).Google Scholar
5. Chen, S.-W., Jan, C.-H., Lin, J.-C. and Chang, Y. A., Metall. Trans., 20A, 2247 (1989).Google Scholar
6. Chuang, Y.-Y., Schmid, R. and Chang, Y. A., Metall. Trans., 15A, 1921 (1984).Google Scholar
7. Kulikov, G. S. and Mikulitsa, I. N., Sov. Phys.-Solid State, 14, 2335 (1973).Google Scholar
8. Plafrey, H. D., Brown, M. and Willoughby, A. F. W., J Electrochem. Soc., 128, 2224 (1981); J. Electron. Mater., 12, 863 (1983).Google Scholar
9. Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett., 51, 415 (1983).Google Scholar
10. Lin, J.-C., Schulz, K. J., Hsieh, K.-C. and Chang, Y. A., J. Electrochem. Soc., 136, 3006 (1989).Google Scholar
11. Schultz, A. E., PhD Thesis, University of Wisconsin, Madison, WI (1988).Google Scholar
12. Hultgren, R. R., Desai, P. D., Hawkins, D. T., Gleiser, M., Kelley, K. K. and Wagman, D. D., “Selected Values of the Thermodynamic Properties of the Elements”, American Soc. for Metals, Metals Park, Ohio 44073 (1973).Google Scholar
13. Kochnev, M. I., Doklady Akad. Nauk SSSR, 70, 433 (1950).Google Scholar
14. Mikula, A., Chang, Y. A. and Neumann, J. P., Trans. Jpn. Inst. Metals, 19, 307 (1978).Google Scholar
15. Cahn, J. W., J. Am. Ceramic Soc., 52, 118 (1969).Google Scholar
16. Saunders, N. and Miodownik, A. P., J. Mater., Res.,1 38 (1986).Google Scholar
17. Clemens, B. M. and Sinclair, R., MRS Bulletin, 19 (1990).Google Scholar
18. Schwarz, R. B., Wong, K. L., Johnson, W. L. and Clemens, B. M., J. Non-Cryst. Solids, 61–62, 129 (1984).Google Scholar
19. Clemens, B. M., Johnson, W. L., and Schwarz, R. B., J. Non-Cryst. Solid, 61–62, 817 (1984).Google Scholar
20. Newcomb, S. B. and Tu, K. N., Appl. Phys. Lett. 48, 1437 (1986).Google Scholar
21. Barbour, J. C., Saris, F. W., Wastasi, M., and Mayer, J. W., Phys. Rev., B32, 1363 (1985).Google Scholar
22. Schroder, H. Samwer, K., and Koster, U., Phys. Rev. Lett., 54, 197 (1985).Google Scholar