Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-27T09:35:25.962Z Has data issue: false hasContentIssue false

P-type Doping of SIC by Aluminum Implantation for Advanced Device Applications

Published online by Cambridge University Press:  10 February 2011

Maria A. Caleca
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, NJ 07030
Honghua Du
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, NJ 07030
Joseph R. Flemish
Affiliation:
US Army Research Laboratory, Physical Sciences Directorate, Fort Monmouth, NJ 07703
Stephen P. Withrow
Affiliation:
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831
Get access

Abstract

6H-SiC epitaxial layers with a background n-type dopant concentration of 1 × 1016/cm3 were hot implanted to doses ranging from 4.0 × 1013 to 1.8 × 1014 Al ions/cm2 at 65, 135, and 220 keV to achieve a box-type implant distribution to a depth of 300 nm. Electrical activation of dopants was carried out using a proximity annealing method at 1500°C in a buffer environment to retard surface degradation of the SiC samples. Measurements using atomic force microscopy illustrated the morphological stability of the SiC surface during the high-temperature annealing. Transmission line measurements showed some degree of dopant activation. Characterization of fabricated p-n junction diodes demonstrated p-type conduction in the aluminum-implanted SiC samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davis, R. F., Kelner, G., Shur, M., Palmour, J. W., and Edmond, J. A., Proc. IEEE, 79, 677 (1991).Google Scholar
2. Ghezzo, M., Brown, D. M., Downey, E., Kretchmer, J., and Kopanski, J. J., Appl. Phys. Lett., 63, 1206 (1993).Google Scholar
3. Edmond, J. A., Withrow, S. P., Wadlin, W., and Davis, R. R., Mater. Res. Soc. Symp. Proc., 77, 193 (1987).Google Scholar
4. Bohn, H. G., Williams, J. M., McHargue, C. H., and Begun, B. M., J. Mater. Res., 2, 107 (1987).Google Scholar
5. Muehlhoff, L., Choyke, W. J., Bozack, M. J., and Yates, J. T., J. Appl. Phys., 60, 28422853 (1986).Google Scholar
6. Ghezzo, M., Brown, Dale M., Downey, Evan, Kretchmer, James, Hennessy, William, Polla, Dennis L., and Bakhru, Hassaram, IEEE Electron Device Lett., 13 [12], 639641 (1992).Google Scholar
7. Flemish, J. R., Xie, K., Du, H., and Withrow, S. P., J.Electrochem. Soc., 142 [9], L144 (1995).Google Scholar
8. Kern, W. and Puotinen, D. A., RCA Rev., 31, 187 (1970).Google Scholar
9. Flemish, J. R., Xie, K., and Zhao, J. H., Appl. Phys. Lett., 64, 2315 (1994).Google Scholar
10. Crofton, J., Barnes, P. A., Williams, J. R., and Edmond, J. A., Appl. Phys. Lett., 62, 384 (1993).Google Scholar
11. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., Burns, M., J. Appl. Phys., 76, 1363 (1994).Google Scholar