Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T13:04:51.961Z Has data issue: false hasContentIssue false

Relative Lateral Movement in Surface Soil of Amicarbazone and Indaziflam Compared with Other Preemergence Herbicides for Turfgrass

Published online by Cambridge University Press:  20 January 2017

Ramon G. Leon*
Affiliation:
West Florida Research and Education Center, University of Florida, Jay, FL 32565
J. Bryan Unruh
Affiliation:
West Florida Research and Education Center, University of Florida, Jay, FL 32565
Barry J. Brecke
Affiliation:
West Florida Research and Education Center, University of Florida, Jay, FL 32565
*
Corresponding author's E-mail: rglg@ufl.edu.

Abstract

Amicarbazone and indaziflam are relatively new herbicides that provide effective control of important weed species in turfgrass. A concern for golf course superintendents and turfgrass managers is the lack of information about runoff risk of these two herbicides, which is a limitation to their proper and safe use. The objectives of this research were (1) to compare lateral movement in surface soil of amicarbazone and indaziflam to other commonly used PRE herbicides in turfgrass (i.e., dithiopyr, prodiamine, pronamide, simazine) and (2) to determine whether incorporating the herbicide with irrigation before a simulated storm event reduces lateral movement. Herbicides were applied at full label rates in two locations (Jay and Milton, FL) with 14% slope, and lateral movement was evaluated using perennial ryegrass and annual bluegrass as bioindicators. Incorporating PRE herbicides with irrigation a few hours before a major simulated storm event did not reduce lateral movement of any of the herbicides evaluated. All herbicides moved outside the treated area regardless of the presence of a simulated storm event. Herbicide lateral movement varied from 61 to 153 cm in Jay, and from 5 to 103 cm in Milton. The Milton location had higher sand content and lower organic matter content than Jay, which favored water infiltration. No herbicide effects were observed 210 cm downslope from the treated area. On the basis of our results, the ranking from highest to lowest lateral movement was pronamide > simazine ≥ indaziflam > amicarbazone ≥ dithiopyr > prodiamine. The difference in lateral movement was approximately 60 to 80 cm between pronamide and prodiamine depending on location and evaluation timing for the 14% slope at the study sites. The results of the present study provide guidance for golf course superintendents and turfgrass managers to determine buffer zones in sensitive areas.

Amicarbazone e indaziflam son unos herbicidas relativamente nuevos que brindan un control efectivo de especies de malezas importantes en céspedes. Una preocupación para los superintendentes de campos de golf y profesionales en el manejo de céspedes es la poca información acerca del riesgo de lavado superficial de estos dos herbicidas, los cual es una limitación para su uso apropiado y seguro. Los objetivos de esta investigación fueron (1) comparar el movimiento lateral sobre la superficie del suelo de amicarbazone e indaziflam con otros herbicidas comúnmente usados en preemergencia (PRE) en céspedes (i.e. dithiopyr, prodiamine, pronamide, simazine) y (2) determinar si el incorporar el herbicida con un riego antes de un evento de tormenta simulada reduce el movimiento lateral. Los herbicidas fueron aplicados a dosis completas según las etiquetas, en dos sitios (Jay y Milton, Florida) con 14% de pendiente, y el movimiento lateral fue evaluado usando Lolium perenne y Poa annua como bioindicadores. El incorporar herbicidas PRE con un riego unas cuantas horas antes de un evento mayor de tormenta simulada no redujo el movimiento lateral de ninguno de los herbicidas evaluados. Todos los herbicidas se movieron fuera del área tratada sin importar la presencia del evento de tormenta simulada. El movimiento lateral del herbicida varió de 61 a 153 cm en Jay y de 5 a 103 cm en Milton. El sitio en Milton tenía mayor contenido de arena y un menor contenido de materia orgánica que el sitio en Jay, lo que favoreció la infiltración de agua. No se observó ningún efecto de los herbicidas a 210 cm pendiente abajo del área tratada. Con base en nuestros resultados, el ranking de mayor a menor movimiento lateral fue pronamide > simazine ≥ indaziflam > amicarbazone ≥ prodiamine. La diferencia en el movimiento lateral fue aproximadamente 60 a 80 cm entre pronamide y prodiamine, dependiendo de la localidad y el momento de evaluación para la pendiente de 14% en los sitios experimentales estudiados. Los resultados del presente estudio brindan una guía para los superintendentes de campos de golf y profesionales en el manejo de céspedes para determinar las zonas de amortiguamiento en áreas sensibles o de riesgo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Scott McElroy, Auburn University.

References

Literature Cited

Anonymous (2012) Spect(i)cle® FLO herbicide product label. Bayer Environmental Science Publication No. 80526318. Research Triangle Park, NC: Bayer Environmental Science. 17 pGoogle Scholar
Anonymous (2014) Xonerate herbicide product label. Cary, NC: Arysta LifeScience. 33 pGoogle Scholar
Boivin, A, Cherrier, R, Schiavon, M (2005) A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 61:668676 Google Scholar
Brabham, C, Lei, L, Gu, Y, Stork, J, Barrett, M, DeBolt, S (2014) Indaziflam herbicidal action: a potent cellulose biosynthesis inhibitor. Plant Physiol 166:11771185 Google Scholar
Briggs, JA, Whitwell, T, Riley, MB (2003) Effect of delayed irrigation on isoxaben and oryzalin runoff from a container nursery. Weed Sci 51:463470 Google Scholar
Brosnan, JT, McCullough, PE, Breeden, GK (2011) Smooth crabgrass control with indaziflam at various spring timings. Weed Technol 25:363366 Google Scholar
Cole, JT, Baird, JH, Basta, NT, Huhnke, RL, Storm, DE, Johnson, GV, Payton, ME, Smolen, MD, Martin, DL, Cole, JC (1997) Influence of buffers on pesticide and nutrient runoff from bermudagrass turf. J Environ Qual 26:15891598 Google Scholar
Dayan, FE, Trindale, MLB, Velini, ED (2009) Amicarbazone, a new photosystem II inhibitor. Weed Sci 57:579583 Google Scholar
Gish, TJ, Prueger, JH, Daughtry, CST, Kustas, WP, McKee, JG, Russ, AL, Hatfield, JL (2011) Comparison of field-scale herbicide runoff and volatilization losses: an eight-year field investigation. J Environ Qual 40:14321442 Google Scholar
Haith, DA (2010) Ecological risk assessment of pesticide runoff from grass surfaces. Environ Sci Technol 44:64966502 Google Scholar
Haith, DA, Rossi, FS (2003) Risk assessment of pesticide runoff from turf. J Environ Qual 32:447455 Google Scholar
Huang, X, Pedersen, T, Fischer, M, White, R, Young, TM (2004a) Herbicide runoff along highways. 2. Field observations. Environ Sci Technol 38:32633271 Google Scholar
Huang, X, Pedersen, T, Fischer, M, White, R, Young, TM (2004b) Herbicide runoff along highways. 2. Sorption control. Environ Sci Technol 38:32723278 Google Scholar
Jeffries, MD, Gannon, TW, Rufty, TW, Yelverton, FH (2013) Effect of selective amicarbazone placement on annual bluegrass (Poa annua) control in creeping bentgrass growth. Weed Technol 27:520526 Google Scholar
Jhala, AJ, Ramirez, AHM, Singh, M (2012) Leaching of indaziflam applied at two rates under different rainfall situations in Florida Chandler soil. Bull Environ Contam Toxicol 88:326332 Google Scholar
Jhala, AJ, Singh, M (2012) Leaching of indaziflam compared with residual herbicides commonly used in Florida citrus. Weed Technol 26:602607 Google Scholar
Johnson, BJ, Bundschuh, SH (1993) Effect of dithiopyr timing on establishment of three cool-season turfgrass species. Weed Technol 7:169173 Google Scholar
Jordan, LS, Day, BE, Clerx, WA (1963) Effect of incorporation and method of irrigation on preemergence herbicides. Weeds 11:157160 Google Scholar
Kloppel, H, Haider, J, Kordel, W (1994) Herbicides in surface runoff: a rainfall simulation study on small plots in the field. Chemosphere 28:649662 Google Scholar
McCullough, PE, Hart, SE, Weisenberger, D, Reicher, ZJ (2010) Amicarbazone efficacy on annual bluegrass and safety on cool-season grasses. Weed Technol 24:461470 Google Scholar
McCullough, PE, Yu, J, Gomez de Barreda, D (2013) Efficacy of preemergence herbicides for controlling a dinitroaniline-resistant goosegrass (Eleusine indica) in Georgia. Weed Technol 27:639644 Google Scholar
McElroy, JS, Breeden, GK, Wehtje, G (2011) Evaluation of annual bluegrass control programs for bermudagrass turf overseeded with perennial ryegrass. Weed Technol 25:5863 Google Scholar
Mendes, KF, Dos Reis, MR, Dias, ACR, Formiga, JA, Christoffoleti, PJ, Tornisielo, VL (2014) A proposal to standardize herbicide sorption coefficients in Brazilian tropical soils compared to temperate soils. J Agric Food Chem 12:424433 Google Scholar
Muller, K, Stenger, R, Rahman, A (2006) Herbicide loss in surface runoff from a pastoral hillslope in the Pukemanga catchment (New Zealand): role of pre-event soil water content. Agric Ecosyst Environ 112:381390 Google Scholar
Possamai, ACS, Inoue, MH, Ferreira Mendes, K, de Santana, DC, Ben, R, dos Santos, EG (2013) Leaching potential and residual effect of amicarbazone in soil of contrasting texture. Semina Ci Agr 34:22032210 Google Scholar
Potter, TL, Truman, CC, Strickland, TC, Bosch, DD, Webster, TM (2008) Herbicide incorporation by irrigation and tillage impact on runoff loss. J Environ Qual 37:839847 Google Scholar
Potter, TL, Truman, CC, Strickland, TC, Bosch, DD, Webster, TM, Franklin, DH, Bednarz, CW (2006) Combined effects of constant versus variable intensity simulated rainfall and reduced tillage movement on cotton preemergence herbicide runoff. J Environ Qual 35:1984–1902Google Scholar
Rice, PJ, Horgan, BP, Rittenhouse, JL (2010) Evaluation of core cultivation practices to reduce ecological risk of pesticides in runoff from Agrostis palustris . Environ Toxicol Chem 26:12151223 Google Scholar
Shaner DL ed. (2014) Herbicide handbook. 10th edn. Lawrence, KS: Weed Science Society of America. 513 pGoogle Scholar
Smith, A (1995) Potential movement of pesticides following application to golf courses. USGA Green Sect Rec 33:1314 Google Scholar
Smith, AE, Bridges, DC (1996) Movement of certain herbicides following application to simulated golf course greens and fairways. Crop Sci 36:14391445 Google Scholar
Wauchope, RD (1978) The pesticide content of surface water draining from agricultural fields: a review. J Environ Qual 7:459472 Google Scholar
Wauchope, RD, Yeh, S, Linders, JBHJ, Kloskowski, R, Tanaka, K, Rubin, B, Katayama, A, Kordel, W, Gerstl, Z, Lane, M, Unsworth, JB (2002) Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Manag Sci 58:419445 Google Scholar