Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T13:33:35.850Z Has data issue: false hasContentIssue false

Thermoelectric Properties of Undoped and Si-doped Bulk GaN

Published online by Cambridge University Press:  07 November 2013

Baozhu Wang
Affiliation:
College of Information Science and Engineering, Hebei University of Science and Technology, 70 Yuhua East Rd., Shijiazhuang, Hebei 050018, China.
Bahadir Kucukgok
Affiliation:
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA.
Qinyue He
Affiliation:
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA.
Andrew G. Melton
Affiliation:
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA.
Jacob Leach
Affiliation:
Kyma Technologies, 8829 Midway West Road, Raleigh, NC 27617, USA
Kevin Udwary
Affiliation:
Kyma Technologies, 8829 Midway West Road, Raleigh, NC 27617, USA
Keith Evans
Affiliation:
Kyma Technologies, 8829 Midway West Road, Raleigh, NC 27617, USA
Na Lu
Affiliation:
Department of Engineering Technology, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC28223, USA.
Ian T. Ferguson
Affiliation:
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA.
Get access

Abstract

In this study, thermoelectric properties of bulk and epitaxy GaN with various doping concentration are investigated. Seebeck coefficients decreased with the increase of carrier concentration for both bulk and epitaxial GaN samples, and the Seebeck coefficients of epitaxial GaN samples are found to be larger than that of bulk GaN samples in the similar carrier density due to the higher dislocation scattering. For epitaxial samples, a high power factor of 4.72 × 10-4 W/m-K2 is observed. The power factors of the bulk GaN samples are in the range of from 0.315× 10-4W/m-K2 to 0.354× 10-4W/m-K2 due to the low Seebeck coefficients.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, L. E., Science, 321, 14571461(2008).CrossRefGoogle Scholar
Pantha, B. N., Lin, J. Y. and Jiang, H. X., SPIE 7608, 760811 (2009).Google Scholar
Shakouri, A., Annual Review Materials Research 41, 399431 (2011).CrossRefGoogle Scholar
Fergus, J.W., Journal of the European Ceramic Society 32, 525540 (2012).CrossRefGoogle Scholar
Sztein, A., Ohta, H., Bowers, J. E., DenBaars, S. P., and Nakamura, S., Journal of Applied Physics 110, 123709 (2011).CrossRefGoogle Scholar
Liu, W. and Balandin, A. A., Journal of Applied Physics 97, 173715 (2005).Google Scholar
Yamaguchi, S., Izaki, R., Kaiwa, N., Yamamoto, A., Applied Physics Letters 86, 252102, (2005).CrossRefGoogle Scholar
Pantha, B.N., Dahal, R., Li, J., Lin, J.Y., Jiang, H.X., Applied Physics Letters 92, 042112 (2008).CrossRefGoogle Scholar
Sztein, A., Ohta, H., Sonoda, J., Ramu, A., Bowers, J. E., DenBaars, S. P., and Nakamura, S., Applied Physics Express 2, 111003 (2009).CrossRefGoogle Scholar
Tong, H., Zhao, H., Handara, V.A., Herbsommer, J.A. and Tansu, N., SPIE 7211, 721103 (2009).Google Scholar
Kucukgok, B., Su, L. X., Hurwitz, E., Melton, A., Liu, Z. Q., Lu, N., Ferguson, I. T., Material Research Society Symposium Proceeding, 1329, (2011).Google Scholar
Hurwitz, E., Asghar, M., Melton, A., Kucukgok, B., Su, L. Q., Orocz, M., Jamil, M., Lu, N., Ferguson, I. T., Journal of Electronic Materials, 40, 513517(2011)CrossRefGoogle Scholar
Hurwitz, E. N., Kucukgok, B., Melton, A. G., Liu, Z., Lu, N., Ferguson, I. T., Material Research Society Symposium Proceeding, 1396, (2012).Google Scholar
Kaiwa, N., Hoshino, M., Yaginuma, T., Izaki, R. and Yamaguchi, S., Thin Solid Film, 515, 45014504, (2005).CrossRefGoogle Scholar
Kucukgok, B., He, Q., Carlson, A., Melton, A. G., Ferguson, I. T. and Lu, N., Material Research Society Symposium Proceeding, 1490, (2013).Google Scholar
You, J. H., Lu, J. Q. and Johnson, H. T, J. Appl. Phys., 99, 033706 (2006)CrossRefGoogle Scholar
Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S. and Snyder, G. J., Science,321,554557(2008)CrossRefGoogle Scholar
Tajima, K., Qiu, F. B., Shin, W., Sawaguchi, N., Izu, N., Matsubara, I. and Murayama, N., JAPANESE JOURNAL OF APPLIED PHYSICS,43, 59785983(2004)CrossRefGoogle Scholar
Brandt, M. S., Herbst, P., Angerer, A., Ambacher, O. and Stutzmann, M., Physical Review (B), 58, 77867791 (1998)CrossRefGoogle Scholar