Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T04:34:36.328Z Has data issue: false hasContentIssue false

Coherent Phonon Materials for Laser Applications

Published online by Cambridge University Press:  15 February 2011

T. K. Cheng
Affiliation:
Department of Electrical Engineering, MIT, Cambridge, MA 02139
J. Vidal
Affiliation:
Department of Physics, MIT, Cambridge, MA 02139
H. J. Zeiger
Affiliation:
Department of Physics, MIT, Cambridge, MA 02139
E. P. Ippen
Affiliation:
Department of Electrical Engineering, MIT, Cambridge, MA 02139
G. Dresselhaus
Affiliation:
Francis Bitter National Magnet Laboratory, IT, Cambridge, MA 02139
M. S. Dresselhaus
Affiliation:
Department of Physics, MIT, Cambridge, MA 02139
Get access

Abstract

With the development of the short pulse laser source, it has been demonstrated that molecular [1–4] and lattice dynamics [5–7] can be studied in the time domain. Pulses of light that are short compared to the optical phonon period have been found to initiate coherent lattice vibrations through various mechanisms which depend on the material type. The purpose of this paper is to describe the observation of the coherent phonon phenomenon in semimetals and narrow-gap semiconductors, and to propose a potential application of this phenomenon as a terahertz light modulator.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] De Silvestri, S., Fujimoto, J.G., Ippen, E.P., Gamble, E.B. Jr., Williams, L.R. and Nelson, K.A., Chem. Phys. Lett. 116,146 (1985).CrossRefGoogle Scholar
[2] Rosker, M.J., Wise, F.W. and Tang, C.L., Phys. Rev. Lett. 57, 321 (1986).CrossRefGoogle Scholar
[3] Yan, Y.X. and Nelson, K.A., J. Chem. Phys. 83, 5391 (1986); Y.X. Yan and K.A. Nelson, J. Chem. Phys. 87, 6257 (1987).Google Scholar
[4] Chesnoy, J. and Mokhtari, A., Phys. Rev A 38, 3566 (1988).Google Scholar
[5] Cheng, T.K., Brorson, S.D., Kazeroonian, A.K., Moodera, J.S., Dresselhaus, G., Dresselhaus, M.S., Ippen, E.P., Appl. Phys. Lett. 57, 1004 (1990).Google Scholar
[6] Cho, G.C., Kutt, W.A. and Kurz, H., Phys. Rev. Lett. 65, 764 (1990); W.A. Kutt, W. Albrecht and H. Kurz, J. Quant. Elect. 28, 2434 (1992).Google Scholar
[7] Chwalek, J.M., Uher, C., Whitaker, J.F., Mourou, G.A. and Agostinelli, J.A., Appl. Phys. Lett. 58, 980 (1991).CrossRefGoogle Scholar
[8] See, for example, Ippen, E. P. and Shank, C. V., in Ultrashort Light Pulses, edited by Shapiro, S. L., (Springer-Verlag, Berlin, 1984), Chap. 3, p. 83.Google Scholar
[9] Fork, R. L., Greene, B. I. and Shank, C. V., Appl. Phys. Lett. 38, 671 (1981).Google Scholar
[10] Cheng, T. K., Vidal, J., Zeiger, H. J., Ippen, E. P., Dresselhaus, G. and Dresselhaus, M. S., Appl. Phys. Lett. 59, 1923 (1991).Google Scholar
[11] Zeiger, H. J., Vidal, J., Cheng, T. K., Ippen, E. P., Dresselhaus, G. and Dresselhaus, M. S., Phys. Rev. B 45, 768 (1992).CrossRefGoogle Scholar
[12] Zitter, R. N., in The Physics of Semimetals and Narrow Gap Semiconductors (Carter, D. L. and Bates, R. T. eds.), Pergamon Press, New York (1971) pp. 285.Google Scholar