Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T17:50:13.862Z Has data issue: false hasContentIssue false

Investigation of Cubic PbS/AgSbS2 System for Thermoelectric Applications

Published online by Cambridge University Press:  01 February 2011

Iliya Todorov
Affiliation:
todorov@anl.gov, Argonne National Laboratory, Materials Science Division, 9700 S. Cass Ave., Argonne, IL, 60439, United States
Duck-Young Chung
Affiliation:
dychung@anl.gov, Argonne National Laboratory, Materials Science Division, 9700 S. Cass Ave., Arg onne, IL, 60439, United States
Mercouri Kanatzidis
Affiliation:
m-kanatzidis@northwestern.edu, Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL, 60208, United States
Get access

Abstract

Investigation of a family of bulk cubic compounds with general formula AgPbmMS2+m (M = Sb, Bi) is reported. These PbS-based cubic structured quaternary systems combine a set of desirable features for efficient ZT thermoelectric materials for solar thermal power generation. AgPbmMS2+m (M = Sb, Bi) possess an average NaCl structure (Fm-3m symmetry), high melting point (991 - 1095 °C for M = Sb; 865 - 1091 °C for M = Bi), relatively wide energy gap (0.7 > Eg (eV) > 0.39 for both Sb and Bi). The systematic variation of lattice parameters, energy gap and melting point is reported. Preliminary charge transport properties are reported along with variable temperature thermal conductivity data of selected members.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Venkatasubramanian, R., Siivola, E., Colpitts, T., O'Quinn, B., Nature, 413, 597602 (2001)Google Scholar
2. Sales, B. C., Mandrus, D., Williams, R. K., Science, 272, 1325 (1996)Google Scholar
3.(a) Harman, T. C., Taylor, P. J., Walsh, M. p., J. Electron. Mater., 28, 1121–27 (1999); (b) H. Beyer, J. Nurnus, H. Botner, A. Lambrecht, T. Roch, G. Bauer, Appl. Phys. Lett., 80, 1216-18 (2002); (c) Caylor, J. C., K. Coonley, J. Stuart, T. Colpitts, R. Venkatasubramanian, Appl. Phys. Lett., 87, 023105 (2005)Google Scholar
4. Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., Kanatzidis, M. G., Science, 303, 818–21 (2004)Google Scholar
5.(a) Quarez, E., Hsu, K.F., Pcionek, R., Frangis, N., Polychroniadis, E.K., and Kanatzidis, M.G., J. Amer. Chem. Soc., 2005. 127: p. 91779190. (b) Poudeu, P.F.P., J. D'Angelo, A.D. Downey, J.L. Short, T.P. Hogan, and M.G. Kanatzidis, Angew. Chemie Int. Ed., 2006. 45: p. 3835–3839. (c) Androulakis, J., K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D'Angelo, A. Downey, T. Hogan, and M. G. Kanatzidis, Adv. Mater., 2006. 18: p. 1170–1173.Google Scholar
6. El-Sharkawy, A. A., El-Azm, A. M. Abou, Kenawy, M. I., Hillal, A. S., and Abu-Basha, H. M., Int. J. Thermophys., 3, 261–69 (1983)Google Scholar