Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T04:37:59.067Z Has data issue: false hasContentIssue false

Electrochemical and Mechanical Characterization of TiO2 Nanotubes Obtained by Anodic Oxidation at High Voltage

Published online by Cambridge University Press:  29 November 2016

S. Mejía Sintillo
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos. Av. Universidad1001.
C. Cuevas Arteaga
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos. Av. Universidad1001.
R. Ma. Melgoza
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas, Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos. Av. Universidad1001.
P. Mijailova Nacheva
Affiliation:
Instituto Mexicano de Tecnología del Agua-Postgrado en Ingeniería Ambiental UNAM-Campus IMTA. Blvd. Paseo Cuauhnáhuac 8532, Col. Progreso, C.P. 62550 Jiutepec, Mor., México.
Get access

Abstract

The array of the TiO2 nanotubular films, also called one-dimensional nanostructures is carried out by electrochemical anodization tests, for which, titanium sheets were used with a high purity (99.7% and 0.25 mm thickness) in a solution of deionized water and glycerol (50:50 vol.%) + 0.27M NH4F applying a voltage of 20V. Electrochemical tests were performed at an anodization time of 2:30 hours and 3:30 hours. For the tests mirror polished foils and unpolished foils with flat surfaces to achieve better uniform arrays during the anodic growth of nanotubes were used. After anodizing, samples were observed in the scanning electron microscope (SEM) to determine the geometry and morphology of the films. Also, potentiodynamic polarization curves were performed for samples crystallized at 600 °C and 450 °C (polished and unpolished) to determine the electrochemical stability of the films, which were presented at two aqueous solutions: 1M of Na2SO4 (pH= 6.7) and 1M Na2SO4 + H2SO4 (pH= 3.2). Mechanical characterization was also performed by nanoindentation technique through the application of loading/unloaings of: (1, 2.5, 5, 10 mN). Chemical characterization was performed using XRD analysis, with the aim to determine the crystalline phases formed in the films crystallized at 450 °C and 600 °C. The electrochemical characterization showed that the TiO2 nanotubular film obtained by mirror polished and crystallized at 600 °C showed better electrochemical stability. Nanoindentation tests showed deformation curves, and the parameters such as hardness, Vickers hardness, elastic modulus and the maximum penetration depth were determined as mechanical parameters.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Macak, J.M., Hildebrand, H., Marten-Jahns, U., Schmuki, P., Journal of Electroanalytical Chemistry 621, 254266 (2008).CrossRefGoogle Scholar
Regonini, D., Satka, A., Jaroenworaluck, A., Allsopp, D.W.E., Bowen, C.R., Stevens, R., Electrochimica Acta 74, 244253, (2012).CrossRefGoogle Scholar
Yang, Yang, Wang, Xiaohui, Materials Science and Engineering B 149, 5862, (2008).CrossRefGoogle Scholar
Xiao, Xiufeng, Ouyang, Keguan, Liu, Rongfang, Liang, Jianhe, Applied Surface Science 255, 36593663 (2009).CrossRefGoogle Scholar
Albu, Sergiu P., Schmuki, Patrik, Electrochimica Acta 91, 9095 (2013).CrossRefGoogle Scholar
Palmas, S., Da Pozzo, A., Delogu, F., Mascia, M., Vacca, A., Guisbiers, G., Journal of Power Sources 204, 265272 (2012).CrossRefGoogle Scholar
Valota, A., LeClere, D.J., Skeldon, P., Curioni, M., Hashimoto, T., Berger, S., Kunze, J., Schmuki, P., Thompson, G.E., Electrochimica Acta 54, 43214327 (2009.)CrossRefGoogle Scholar
Kim, Doohun, Schmidt-Stein, Felix, Hahn, Robert, Schmuki, Patrik, Electrochemistry Communications 10, 10821086 (2008).CrossRefGoogle Scholar
Macak, Jan M., Tsuchiya, Hiroaki, Taveira, Luciano, Aldabergerova, Saule, and Schmuki, Patrik, Angew. Chem. Int. Ed., 44, 74637465 (2005).CrossRefGoogle Scholar
Macak, Jan M., Schmuki, Patrik, Electrochimica Acta 52, 12581264 (2006).CrossRefGoogle Scholar
Alivov, Yahya, Fan, Z. Y., and Johnstone, D., Journal of applied physics106, 343 (2009).Google Scholar
Mutuma, Bridget K., Shao, Godlisten N., Kim, Won Duck, Kim, Hee Taik, Journal of Colloid and Interface Science 442, 17 (2015).CrossRefGoogle Scholar
Cabaleiro, D., Nimo, J., Pastoriza-Gallego, M.J., Piñeiro, M.M., Legido, J.L., Lugo, L., Chem, J.. Thermodynamics 83, 6776 (2015).CrossRefGoogle Scholar
Yu, Jiaguo, Wang, Bo, Applied Catalysis B: Environmental 94, 295302 (2010).CrossRefGoogle Scholar
Lai, Yuekun, Zhuang, Huifang, Sun, Lan, Chen, Zhong, Lin, Changjian, Electrochimica Acta 54, 65366542 (2009).CrossRefGoogle Scholar
Berger, S., Ghicov, A., Nah, Y.-C., and Schmuki, P., Langmuir 25 (9), 48414844 (2009).CrossRefGoogle Scholar
Mohammadi Zahrani, E., Alfantazi, A.M., Corrosion Science 65, 340359 (2012).CrossRefGoogle Scholar
Games, Lucas Aloia, Sanchez, Andrea Gomez, Jimenez-Pique, Emilio, Schreiner, Wido H., Ceré, Silvia M., Ballarre, Josefina, Surface & Coatings Technology 206, 47914798 (2012).CrossRefGoogle Scholar
Gregorio-Vázquez, Lucia, Cuevas-Arteaga, Cecilia, Hernández, Grecia, del Ángel-Meraz, Ebelia, Avances en Ciencia e Ingeniería 4-1, 8595 (2013).Google Scholar
Vera-Jiménez, A. M., Melgoza-Alemán, R.M., Valladares-Cisneros, M.G., Cuevas-Arteaga, C., Journal of Nanomaterials 12, 112 (2015) http://dx.doi.org/10.1155/2015/624073.CrossRefGoogle Scholar
Reynaud Morales, A.G., Cuevas Arteaga, C., Superficies y Vacío 26(2), 6470 (2013).Google Scholar
Crawford, G.A., Chawla, N., Das, K., Bose, S., Bandyopadhyay, A., Acta Biomaterialia 3, 359367 (2007).CrossRefGoogle Scholar
Tang, C. Y., Tsui, C. P., Janackovic, DJ., Uskokovic, P. S., Journal of Optoelectronics and Advanced Materials 8/3, 11941199 (2006).Google Scholar
Lucca, D.A., Herrmann, K., Klopfstein, M.J.. Nanoindentation: Manufacturing Technology 59, 803819 (2010).Google Scholar
Soares, Paulo, Mikowski, Alexandre, Lepienski, Carlos M., Santos, Emanuel Jr., Soares, Gloria A., Swinka Filho, Vitoldo, Kuromoto, Neide K.. Hardness and Elastic Modulus of TiO2 Anodic Films Measured by Instrumented Indentation. Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jbm.b.30900 Google Scholar
Li, Xiaodong, Bhushan, Bharat, Materials Characterization 48, 1136 (2002) ‘‘Standard Practice for Instrumented Indentation Testing,’’ E2546–07, ASTM International, West Conshohocken, PA (2007) ‘‘Metallic Materials–Instrumented Indentation Test for Hardness and Materials Parameters,’’ ISO 14577, International Organization for Standardization, Geneva, Switzerland (2002).CrossRefGoogle Scholar