Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T14:05:09.483Z Has data issue: false hasContentIssue false

High Performance N-type Organic Thin-Film Transistors with Inert Contact Metals

Published online by Cambridge University Press:  31 January 2011

Sarah Schols
Affiliation:
sarah.schols@imec.be, IMEC, PME, Leuven, Belgium
Lucas Van Willigenburg
Affiliation:
luuk.vanwilligenburg@imec.be, IMEC, PME, Leuven, Belgium
Robert Müller
Affiliation:
robert.muller@imec.be, IMEC, PME, Leuven, Belgium
Dieter Bode
Affiliation:
dieter.bode@imec.be, IMEC, PME, Leuven, Belgium
Maarten Debucquoy
Affiliation:
maarten.debucquoy@imec.be, IMEC, PME, Leuven, Belgium
Jan Genoe
Affiliation:
jan.genoe@imec.be, IMEC, PME, Leuven, Belgium
paul Heremans
Affiliation:
Paul.heremans@imec.be, IMEC, PME, Leuven, Belgium
Shaofeng Lu
Affiliation:
info@polyera.com, Polyera Corp., Skokie, Illinois, United States
Antonio Facchetti
Affiliation:
a-facchetti@northwestern.edu, Polyera Corp., Skokie, Illinois, United States
Get access

Abstract

Thin film growth by high vacuum evaporation of the n-type organic semiconductor 5, 5″′-diperfluorohexylcarbonyl-2,2′:5′,2″:5″,2″′-quaterthiophene (DFHCO-4T) on poly-(α-methylstyrene)-coated n++-Si/SiO2 substrates is investigated at various deposition fluxes and substrate temperatures. Film characterization by atomic force microscopy reveals typical Stransky-Krastanov growth. Transistors with Au source-drain top contacts and optimized DFHCO-4T deposition conditions attain an apparent saturation mobility of 4.6 cm2/Vs, whereas this parameter is 100× lower for similar transistors with LiF/Al top contacts. We explain this lower performance by the formation of a thin interfacial layer with poor injection properties resulting from a redox reaction between Al and DFHCO-4T.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wöbkenberg, P. H., Ball, J. Bradley, D. D. C. Anthopoulos, T. D. Kooistra, F. Hummelen, J. C. and Leeuw, D. M. de, Appl. Phys. Lett. 92, 143310 (2008).Google Scholar
2 Katz, H. E. Lovinger, A. J. Johnson, J. Kloc, C. Siegrist, T. Li, W. Lin, Y.-Y., and Dodabalapur, A. Nature 404, 478 (2000).Google Scholar
3 Malenfant, P. R. L. Dimitrakopoulos, C. D. Gelorme, J. D. Kosbar, L. L. Graham, T. O. Curioni, A. and Andreoni, W. Appl. Phys. Lett. 80, 2517 (2002).Google Scholar
4 Facchetti, A. Mushrush, M. Yoon, M. Hutchison, G. R. Ratner, M. A. and Marks, T. J. J. Am. Chem. Soc. 126, 13859 (2004).Google Scholar
5 Yoon, M., Kim, C. Facchetti, A. and Marks, T. J. J. Am. Chem. Soc. 128, 12851 (2006).Google Scholar
6 Gundlach, D. J. Pernstich, K. P. Wilckens, G. Grüter, M., Haas, S. and Batlogg, B. J. Appl. Phys. 98, 064502 (2005).Google Scholar
7 Anthopoulos, T. D. Singh, B. Marjanovic, N. Sariciftci, N. S. Ramil, A. M. Sitter, H. Cölle, M., and Leeuw, D. M. de, Appl. Phys. Lett. 89, 213504 (2006).Google Scholar
8 Myny, K. Vusser, S. De, Steudel, S. Janssen, D. Müller, R., Jonge, S. De, Verlaak, S. Genoe, J. and Heremans, P. Appl. Phys. Lett. 88, 222103 (2006).Google Scholar
9 Chua, L. Zaumseil, J. Chang, J. Ou, E. C. Ho, P. K. Sirringhaus, H. and Friend, R. H. Nature 434, 194 (2005).Google Scholar
10 Zaumseil, J. and Sirringhaus, H. Chem. Rev. 107, 1296 (2007).Google Scholar
11 Venables, J. A. Spiller, G. D. and Hanbucken, M. Rep. Prog. Phys. 47, 399 (1984).Google Scholar
12 Yoon, M., DiBenedetto, S. A. Facchetti, A. and Marks, T. J. J. Am. Chem. Soc. 127, 1348 (2005).Google Scholar
13 Zaumseil, J. Donley, C. L. Kim, J. Friend, R. H. and Sirringhaus, H. Adv. Mater. 18, 2708 (2006).Google Scholar
14 Grimshaw, J. Organic Electrochemistry: An Introduction and a Guide, 4th edition (Dekker (N.Y.), 2000), chap. 10, Carbonyl Compounds, pp.411434.Google Scholar
15 Becker, H. G. O. Beckert, R. Domschke, G. Fanghänel, E., Habicher, W. D. Metz, P. Pavel, D. and Schwetlick, K. Organikum, 21st edition (Wiley-VCH (Weinheim), 2001), chap. D.7 Reaktionen von Carbonylverbindungen, pp.586587.Google Scholar
16 Hulce, M. and Lavaute, T. Tetrahed. Lett. 29, 525 (1988).Google Scholar
17 Kotz, J. C. and Purcell, K. F. Chemistry & Chemical Reactivity, 2nd edition (Saunders College Publishing, 1991), chap. 21 Electrochemistry: The Chemistry of Oxidation-Reduction Reactions, pp.851899.Google Scholar
18 CRC Handbook of Chemistry and Physics, 85th edition, edited by Lide, D. R. (CRC Press (Boca Raton), 2004-2005), pp.8.238.33.Google Scholar
19 Bard, A. J. and Faulkner, L.R. Electrochemical Methods: fundamentals and Applications, 2nd edition (Wiley&Sons, 2001), p. 809.Google Scholar
20 Schols, S. Willigenburg, L. Van, Müller, R., Bode, D. Debucquoy, M. Jonge, S. De, Genoe, J. Heremans, P. Lu, S. and Facchetti, A. Appl. Phys. Lett. 93, 263303 (2008).Google Scholar
21 Hirose, Y. Kahn, A. Aristov, V. Soukiassian, P. Bulovic, V. Forrest, S.R. Phys. Rev. B, 54, 13748 (1996).Google Scholar