Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T16:42:18.467Z Has data issue: false hasContentIssue false

1/f Noise in MoS2 Field Effect Transistors with Various Layer Thicknesses

Published online by Cambridge University Press:  12 June 2014

Suprem R. Das*
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, U.S.A Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, U.S.A
Jiseok Kwon
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, U.S.A Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, U.S.A
David B. Janes
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, U.S.A Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, U.S.A
*
*(contact author srdas@purdue.edu)
Get access

Abstract

1/f noise in semiconductor devices and circuits provides important information regarding quality of the interface as well as the transport mechanism. In 1D and 2D channel materials, 1/f noise also provides information on stability under ambient conditions, including effects of contaminants adsorbed on the surface. In addition, noise levels are important in evaluating suitability of the device for analog and digital applications. In this work, we have fabricated back-gated field-effect transistors (FETs) using various thicknesses of mechanically exfoliated MoS2 flakes (bilayer and 15 layer flakes) and studied the 1/f noise under ambient conditions. The on-current of the devices scales with the number of layers. The Hooge parameters inferred from the measured noise amplitudes and calculated carrier densities are comparable to prior reports on devices such as CNTs and graphene FETs, even when measured under ambient conditions. The effect of channel and contacts on both the conductance and noise can be inferred from bias-dependent current and noise measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schottky, W., Ann.. d. Phys. 57, 157 (1918)Google Scholar
Johnson, J. B., Phys. Rev. 26, 71 (1925)CrossRefGoogle Scholar
Hooge, F. N., Physica 83B, 14 (1976)Google Scholar
Voss, R. F. and Clarke, J., Nature 258, 317 (1975)CrossRefGoogle Scholar
Ivanov, P. C. et al. ., Chaos 11, 641 (2001); B. Pilgram and D. T. Kaplan, Am. J. Physiol. 276, R1(1999) CrossRefGoogle Scholar
McWhorter, A. L., PhD dissertation, MIT Lincoln Laboratory (1955) Google Scholar
, L. Vandamme, K. J., Li, X. and Rigaud, D., IEEE Trans. Elect. Dev. 41, 1936 (1994)10.1109/16.333809CrossRefGoogle Scholar
Hooge, F. N., IEEE Trans, . Elect. Dev. 41, 1926 (1994)CrossRefGoogle Scholar
Hooge, F. N., Kleinpenning, T. G. M., and Vandamme, L. K. J., Rep. Prog. Phys. 44, 479 (1981)10.1088/0034-4885/44/5/001CrossRefGoogle Scholar
Radisavljevic, B. et al. ., Nature Nanotechnol.6, 147 (2011)Google Scholar
Yoon, Y., Ganapathi, K. and Salahuddin, S., Nano Lett. 11, 3768 (2011)CrossRefGoogle Scholar
Liu, H., Neal, A. T., and Ye, P. D., ACS Nano 6, 8563 (2012)CrossRefGoogle Scholar
Sah, C. T. and Hielscher, F. H., Phys. Rev. Lett 17, 956 (1966); L. K. J. Vandamme, IEEE Trans. Elect. Dev. 36, 987(1989) CrossRefGoogle Scholar
Sangwan, V. K. et al. ., Nano Lett. 13, 4351 (2013)CrossRefGoogle Scholar
Late, D. J. et al. ., ACS Nano 6, 5635 (2012)CrossRefGoogle Scholar
Das, S. and Appenzeller, J., Phys. Status Solidi RRL 7, 268 (2013)CrossRefGoogle Scholar
Appenzeller, J., Lin, Y. M., Knoch, J., Chen, Z., and Avouris, P., IEEE Trans. Nanotechnology 6, 368 (2007)CrossRefGoogle Scholar
Ju, S., Chen, P., Zhou, C., Ha, Y., Facchetti, A., Marks, T. J., Kim, S. K., Mohammadi, S., and Jane, D. B., Appl. Phys. Lett. 92, 243120 (2008)10.1063/1.2947586CrossRefGoogle Scholar
Zhuje, J., Wang, R., Huang, R., Tian, Y., Zhang, L., Kim, D.–W., Park, D., and Wang, Y., IEEE Elect. Dev. Lett. 30, 57 (2009)Google Scholar
Lin, Y. M. and Avouris, P., Nano Lett. 8, 2119 (2008)10.1021/nl080241lCrossRefGoogle Scholar
Baladin, A. A., Electron. Lett. 36, 912 (2000)10.1049/el:20000680CrossRefGoogle Scholar
Delker, C. J., Zi, Y., Yang, C., and Janes, D. B., IEEE Trans. Elect. Dev. 61, 884 (2014)CrossRefGoogle Scholar
Delker, C. J., Zi, Y., Yang, C., and Janes, D. B., IEEE Trans. Elect. Dev. 60, 2900 (2013)CrossRefGoogle Scholar
Shao, Q. et al. ., IEEE Electron. Device Letters 30, 288 (2009)CrossRefGoogle Scholar