Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T22:51:55.353Z Has data issue: false hasContentIssue false

A ‘Building Block’ Approach To Mixed-Colloid Systems Through Electrostatic Self-Organization

Published online by Cambridge University Press:  21 March 2011

Trent H. Galow
Affiliation:
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
Andrew K. Boal
Affiliation:
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
Vincent M. Rotello
Affiliation:
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
Get access

Abstract

We have developed a highly modular electrostatically-mediated approach to colloid-colloid and polymer-colloid networks using ‘building block’ and ‘bricks and mortar’ self-assembly methodologies, respectively. The former approach involved functionalization of one type of nanoparticle building block with a primary amine and a counterpart building block with a carboxylic acid derivative. After combining these two systems, acid-base chemistry followed by immediate charge-pairing resulted in the spontaneous formation of electrostatically-bound mixed-nanoparticle constructs. The shape and size of these ensembles were controlled via variation of particle size and stoichiometries. In the ‘bricks and mortar’ approach, a functionalized polymer is combined with complementary nanoparticles to provide mixed polymer-nanoparticle networked structures. A notable feature is the inherent porosity resulting from the electrostatic assembly. The shape and size of these ensembles were controlled via variation of particle size, stoichiometries and the order in which they were added.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boal, A. K., Rotello, V. M. J. Am. Chem. Soc. 121, 4914 (1999).Google Scholar
Templeton, M. A. C., Cliffel, D. E., Murray, R. W. J. Am. Chem. Soc. 121, 7081 (1999).Google Scholar
2. Korgel, B. A., Fitzmaurice, D. Adv. Mater. 10 (9), 661 (1998).Google Scholar
Schmitt, J., Machtle, P., Eck, D., Mohwald, H., Helm, C. A. Langmuir 15, 3256 (1999).Google Scholar
3. Cassagneau, T., Fendler, J. H., Mallouk, T. E. Langmuir, ASAP Article.Google Scholar
4. Prozorov, T., Prozorov, R., Gedanken, A. Adv. Mater. 10 (18) 1529 (1998).Google Scholar
Caruso, F., Susha, A. S., Giersig, M., Möhwald, H. Adv. Mater. 11 (11), 950 (1999).Google Scholar
5. Loweth, C. J., Caldwell, W. B., Peng, X. G., Alivisatos, A. P., Schultz, P. G. Angew. Chem. Int. Ed. 38, 1808 (1999).Google Scholar
Alivisatos, A. P., Johnsson, K. P., Peng, X. G., Wilson, T. E., Loweth, C. J., Bruchez, M. P., Schultz, P. G. Nature, 382, 607 (1996).Google Scholar
6. Jiang, P., Cizeron, J., Bertone, J. F., Colvin, V. L., J. Am. Chem. Soc. 121, 7957 (1999).Google Scholar
7. Feldheim, D. L., Grabar, K. C., Natan, M. J., Mallouk, T. E. J. Am. Chem. Soc. 118, 7640 (1996).Google Scholar
Marinakos, S. M., Novak, J. P., Brosseau, L. C. III, House, A. B., Edeki, E. M., Feldhaus, J. C., Feldheim, D. L. J. Am. Chem. Soc. 121, 8518 (1999).Google Scholar
8. Chechik, V., Crooks, R. M. Langmuir 121, 6364 (1999).Google Scholar
Zhao, M., Sun, L., Crooks, R. M. J. Am. Chem. Soc. 120, 4877 (1998).Google Scholar
9. Barathi, S., Lev, O. Chem. Commun 2303 (1997).Google Scholar
Ung, T., Liz-Marzán, L. M., Mulvaney, P. Langmuir 14 3740 (1998).Google Scholar
10. Galow, T. H., Boal, A. K., Rotello, V. M. Adv. Mater 576 (2000).Google Scholar
Galow, T. H., Boal, A. K., Ilhan, F., Rotello, V. M. Adv. Func. Mater (2001). Accepted for publication.Google Scholar
11. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., Whyman, R. Chem. Commun. 801 (1994).Google Scholar
Ingram, R. S., Hostetler, M. J., Murray, R. W. J. Am. Chem. Soc. 119, 9175 (1997).Google Scholar
12. A 1:1 Au 1:SiO2 2 is equivalent to 1 mL 1 mg/mL Au 1 colloid solution added to 1 mL 1 mg/mL SiO2 2 colloid solution.Google Scholar
13. Freeman, R. G., Grabar, K. C., Allison, K. J., Bright, R. M., Davis, J. A., Guthrie, A. P., Hommer, M. B., Jackson, M. A., Smith, P. C., Walter, D. G., Natan, M. J. Science 267, 1629 (1995).Google Scholar
14. Oldenburg, S. J., Averitt, R. D., Westcott, S. L., Halas, N. J. Chem. Phys. Lett 288, 243 (1998).Google Scholar