Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T19:53:42.179Z Has data issue: false hasContentIssue false

Electronic Structure of Mercury, Gold and Platinum Impurities in Silicon

Published online by Cambridge University Press:  28 February 2011

Jose R. Leite
Affiliation:
Instituto de Física da Universidade de São Paulo, Caixa Postal 20516, São Paulo, CEP 01498, São Paulo, Brazil
Jose L.A. Alves
Affiliation:
Instituto de Física da Universidade de São Paulo, Caixa Postal 20516, São Paulo, CEP 01498, São Paulo, Brazil
Get access

Abstract

The electronic structures of substitutional and tetrahedral-site interstitial Hg+, Auo and Pt isoelectronic impurities in silicon have been analysed. The centers are theoretically described by the Watson-sphereterminated molecular cluster model within the framework of the multiplescattering Xa formalism. At the substitutional sites the centers are related to the “vacancy” model recently proposed to describe the properties of the elements at the end of the transition-metal series. At the interstitialsites the impurities introduce a hyperdeep s-like level close to the bottom of the valence band and, in agreement with experiments, do not show shallow donor activities. For all the analysed centers the d-states remain fully occupied below, or within, the valence band.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, J.-W. and Milnes, A.G., Ann. Rev. Mater. Sci. 10, 157 (1980); H.H. Woodbury and G.W. Ludwig, Phys. Rev. 126, 466 (1962); R.F. Milligan, F. G. Anderson, and G.D. Watkins, Phys. Rev. B 29, 2819 (1984).Google Scholar
2 Lebedev, A.A and Sultanov, N.A., Sov. Phys. Sem. 3, 276 (1969).Google Scholar
3 Ludwig, W. and Woodbury, H.H., Phys. Rev. Lett. 5, 98 (1970); Solid State Phys. 13, 223 (1962); H.H. Woodbury and G.D. Ludwig, Phys. Rev. 117, 102 (1960)-;-R.L. Kleinhenz, Y.H. Lee, J.W. Corbett, E.G. Sieverts,S.-FT. Muller, and C.A.J. Ammerlaan, Phys. Stat. Sol. (b) 108, 363 (1981).Google Scholar
4 Lowther, J.E., J. Phys. C 13, 3665 (1980); H.H. Woodbury and G.D. Ludwig, Phys. Rev. 117. 13, 3681 (1980); S.D. Brotherton and J.E. Lowther, Phys. Rev. Lett. 44, 606 (1980); L.S. Kogan and K.B. Tolpygo, Sov. Phys. Solid State 15, 10-34 (1973); H.H. Woodbury and G.D. Ludwig, Phys. Rev. 117. 16, 2067 (1975).Google Scholar
5 Sankey, O.F. and Dow, J.D., Phys. Rev. B 27, 7641 (1983).Google Scholar
6 Bullis, W.M., Solid State Electronics 9, 143 (1966).Google Scholar
7 Alves, L.A., Leite, J.R., AssaTi, L.V.C., Gomes, V.M.S., and Silva, C.E.T. Goncalves da, J. Phys. C 17, L771 (1984); 8. L.A. Alves and J.R. Leite, 8 Phys. Rev. B 30, 7284 (190-4).Google Scholar
8 Watkins, G.D., Physica 117B & 118B, 9 (1983).Google Scholar
9 Haldane, F.D.M. and Anderson, P.W., Phys. Rev. B 13, 2553 (1976).Google Scholar
10 Lang, D.V., Grimmeiss, H G, Meijer, E., and Jaros, M., Phys. Rev. B 22, 3917 (1980); L-A. Ledebo and Zhan-Guo Wang, Appl. Phys. Lett. 42, 680 71983); Utzig and W. Schriter, Appl. Phys. Lett. 45, 761 (1984)Google Scholar
11 Postnikov, V.S., Kirilov, V.I., Kapustin, Yu.A., Ammer, S.A., and Kozlov, Yu.I., Sov. Phys. Solid State 20, 2032 (1979).Google Scholar