Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T01:06:40.290Z Has data issue: false hasContentIssue false

Perspectives on an Advanced Hydrogen Storage System: Platinum-Carbon Nanotube Nanocomposite Materials

Published online by Cambridge University Press:  26 February 2011

Renju Zacharia
Affiliation:
zacharia@chonbuk.ac.kr, Chonbuk National University, Chemical Engineering, 561-756 Chonju, Chonju, 561-756, Korea, Republic of
Sami-ullah Rather
Affiliation:
rathersami@gmail.com, Chonbuk National University, Nanomaterials Research Center and School of Chemical Engineering and Technology, Chonju, 561-756, Korea, Republic of
Sang Woon Hwang
Affiliation:
criori@paran.com, Chonbuk National University, Nanomaterials Research Center and School of Chemical Engineering and Technology, Chonju, 561-756, Korea, Republic of
Arul Manuel Stephan
Affiliation:
amanstephan@yahoo.com, Central Electrochemical Research Institute, Electrochemical Energy Systems Division, Chennai, 630 006, India
Kee Suk Nahm
Affiliation:
nahmks@chonbuk.ac.kr, Chonbuk National University, Nanomaterials Research Center and School of Chemical Engineering and Technology, Chonju, 561-756, Korea, Republic of
Get access

Abstract

Transition-metal functionalized-carbon nanotubes (CNTs) represent an important genre of hydrogen storage systems that exhibit superior storage capacity and improved storage kinetics when compared with the pristine CNTs. Here, we compare the reversible gravimetric hydrogen storage capacity of platinum-functionalized CNTs with that of pristine tubes, both measured at 300 K and an equilibrium hydrogen pressure of 1.67 MPa. The maximum reversible hydrogen storage capacity exhibited by the nano-composite material is found to be 3.2 ± 0.1 wt%, which is a nearly 50 % enhancement when compared with that of the pristine tubes. The enhanced hydrogen storage capacity of functionalized CNTs is attributed to the spill-over phenomena as suggested by the estimated storage capacity of Pt phase. The hydrogen storage in Pt nanoparticles modeled using the atomic magic number calculation and Pt hydride stoichiometry of PtH4 also suggests that nearly 15 closed shells of Pt atoms reversibly adsorb and spill hydrogen on to CNT binding sites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fichtner, M., Adv. Eng. Mater. 7, (2005) 443.Google Scholar
2. Hirscher, M., Becher, M., Haluska, M., Dettlaff-Weglikowska, U., Quintel, A., Duesberg, G. S., Choi, Y.-M., Downes, P., Hulman, M., Roth, S., Stepanek, I., Bernier, P., Appl. Phys. A 72, 129 (2001).Google Scholar
3. Zhao, Y., Kim, Y. –H., Dillon, A. C., Heben, M. J. and Zhang, S. B, Phys. Rev. Lett. 94, 155504 (2005).Google Scholar
4. Yildirim, T. and Ciraci, S., Phys. Rev. Lett. 94, 175501 (2005).Google Scholar
5. Yildirim, T., Íñiguez, J. and Ciraci, S., Phys. Rev. B 72, 153403 (2005).Google Scholar
6. Zacharia, R., Kim, K. Y., Kibria, A. K. M. Fazle and Nahm, K. S., Chem. Phys. Lett. 412, 369 (2005).Google Scholar
7. Dag, S., Ozturk, Y., Ciraci, S. and Yildirim, T., Phys. Rev. B 72, 155404 (2005).Google Scholar
8. Lueking, A. and Yang, R. T., J. Catal. 206, 165 (2002).Google Scholar
9. Kubas, G. J., J. Organomet. Chem. 635, 37 (2001).Google Scholar
10. Kubas, G. J., Ryan, R. R., Swanson, B. I., Vergamini, P. J. and Wasserman, H. J., J. Am. Chem. Soc. 106 451 (1984).Google Scholar
11. Lachawiec, A. J., Qi, G., Yang, R. T., Langmuir 21, 11418 (2005).Google Scholar
12. Yang, F. H., Lachawiec, A. J., Yang, R. T., J. Phys. Chem. B 110, 6236 (2006).Google Scholar
13. Roland, U., Braunschweig, T., Roessner, F., J. Mol. Catal. A-Chem. 127, 61 (1997).Google Scholar
14. Yoo, E., Gao, L., Komatsu, T., Yagai, N., Arai, K., Yamazaki, T., Matsuishi, K., Matsumoto, T., Nakamura, J., J. Phys. Chem. B 108, 18903 (2004).Google Scholar
15. Davydov, V. Y., Sheppard, N., Osawa, E., Int. J. Hydrogen Energy 29, 1157 (2004).Google Scholar
16. Sun, Q., Wang, Q., Jena, P. and Kawazoe, Y., J. Am. Chem. Soc. 127, 14582 (2005).Google Scholar
17. Pierard, N., Fonseca, A., Colomer, J.–F., Bossout, C., Benoit, J.–M., Van Tendeloo, G., Pirard, J.-P. and Naggy, J. B., Carbon 42, 1691 (2004).Google Scholar
18. Duan, Y. and Li, J., Mater. Chem. Phys. 87, 452 (2004).Google Scholar
19. Zhang, E., Ni, X. M., Zheng, H. G., Li, Y., Zhang, X. J. and Yang, Z. P., Mater. Lett. 59, 2011 (2005).Google Scholar
20. Andreazza, P., Andreazza-Vignole, C., Rosenbaum, J.P., Thomann, A.-L. and Brault, P., Surf. Coat. Tech. 151–152, 122 (2002).Google Scholar
21. Vivekchand, S. R. C., Govindaraj, A., Seikh, M. Motin, Rao, C. N. R., J. Phys. Chem. B 108, 6935 (2004).Google Scholar
22. Zacharia, R., Kim, K. Y., Hwang, S. W., Nahm, K. S., Catal. Today (2006) doi:10.1016/j.cattod.2006.09.026Google Scholar
23. Sachse, J.-U., Weber, J. and Sveinbjörnsson, E.Ö., Phys. Rev. B 60, 1474 (1999).Google Scholar
24. Mackay, A. L., Acta Cryst. 15, 916 (1962).Google Scholar
25. Schmid, G., Klein, N., Morun, B. and Lehnert, A., Pure Appl. Chem. 62, 1175 (1990).Google Scholar
26. van Hardeveld, R. and Hartog, F., Surf. Sci. 15, 189 (1969).Google Scholar