Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T00:34:47.586Z Has data issue: false hasContentIssue false

Structure and Dynamics of Magnetized Dark Molecular Clouds

Published online by Cambridge University Press:  05 March 2015

P. S. Li
Affiliation:
Astronomy Department, University of California, Berkeley, CA 94720, USA email: psli@berkeley.edu
C. F. McKee
Affiliation:
Astronomy Department, University of California, Berkeley, CA 94720, USA email: psli@berkeley.edu Physics Department, University of California, Berkeley, CA 94720, USA
R. I. Klein
Affiliation:
Astronomy Department, University of California, Berkeley, CA 94720, USA email: psli@berkeley.edu Lawrence Livermore National Laboratory, P.O. Box 808, L-23, Livermore, CA 94550, USA
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive infrared dark clouds (IRDCs) are believed to be the precursors to star clusters and massive stars (e.g. Bergin & Tafalla 2007). The supersonic, turbulent nature of molecular clouds in the presence of magnetic fields poses a great challenge in understanding the structure and dynamics of magnetized molecular clouds and the star formation therein. Using the high-order radiation-magneto-hydrodynamic adaptive mesh refinement (AMR) code ORION2 (Li et al. 2012), we perform a large-scale driven-turbulence simulation to reveal the 3D filamentary structure and dynamical state of a highly supersonic (thermal Mach number = 10) and strongly magnetized (plasma β=0.02) massive infrared dark molecular cloud. With the high resolution afforded by AMR, we follow the dynamical evolution of the cloud in order to understand the roles of strong magnetic fields, turbulence, and self-gravity in shaping the cloud and in the formation of dense cores.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Alves, F. O., Franco, G. A. P., & Girart, J. M. 2008, A&A 486, 13Google Scholar
Arzoumanian, D., Andre, P., Didelon, P., Konyves, V., Schneider, N., et al. 2011, A&A 529, L6Google Scholar
Bergin, E. A. & Tafalla, M. 2007, ARAA 45, 339CrossRefGoogle Scholar
Hill, T., Motte, F., Didelon, P., Bontemps, S., Minier, V., et al. 2011, A&A 533, A94Google Scholar
Li, P. S., Martin, D., Klein, R. I., & McKee, C. F. 2012, ApJ 745, 139CrossRefGoogle Scholar
Moriarty-Schieven, G. H., Anderson, B. G., & Wannier, P. G. 1997, ApJ 475, 642Google Scholar
Pereyra, A. & Magalhães, A. M. 2004, ApJ 603, 584CrossRefGoogle Scholar