Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T06:06:12.076Z Has data issue: false hasContentIssue false

The Influence of Many Body Interactions in the Stress-Velocity Relation of a Single Dislocation in a 2D Lattice.

Published online by Cambridge University Press:  17 March 2011

M. Robles
Affiliation:
Centro de Investigacón en Energía UNAM, Priv. Xochicalco S/N, Col. Centro, Temixco, Mor.; A.P. 34, C.P. 62580 México
V. Mustonen
Affiliation:
Helsinki University of Technology, Laboratory of Computational Engineering P.O.Box 9400, FIN-02015 HUT, Finland
K. Kaski
Affiliation:
Helsinki University of Technology, Laboratory of Computational Engineering P.O.Box 9400, FIN-02015 HUT, Finland
M. Patriarca
Affiliation:
Helsinki University of Technology, Laboratory of Computational Engineering P.O.Box 9400, FIN-02015 HUT, Finland
Get access

Abstract

The stress-velocity relation of a single dislocation moving in a 2-D lattice has been studied using interactive molecular dynamic simulations. A hybrid interatomic model potential which couples Lennard-Jones(LJ) potential and the Embedded Atom Model (EAM) potential, is used to include radial and many body interactions. Both parts are assembled by a parameter so that the potential can be changed to describe a pure radial interaction to a strong many body interaction in a continuous way. Setting up a constant-stress scenario, the movement of a single dislocation is tracked from zero velocity state, up to a terminal velocity state. The external stress vs. terminal velocity curves have been obtained in the subsonic regime for different values of the coupling parameter. Non-linear relations are found velocity regime 0.1ct to 0.6ct, where ct is the transverse speed of sound. Results have been analyzed using an augmented Peierls model to seek the connection between atomic scale, continuum variables and the limiting speed of dislocations

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. , T. V. Jr. and Jassby, K. M., Mater. Sci. Eng. 7, 95 (1971).Google Scholar
2. Johnston, W. G. and Gillman, J., J. Appl. Phys. 30, 129 (1959).Google Scholar
3. Suzuki, T., Tekeuch, S., and Yosinaga, H., Dislocation Dynamics and Plasticity (Springler Verlag, Berlin, 1989).Google Scholar
4. Nabarro, F. R. N., Theory of crystal dislocations (Oxford University Press, Great Britain, 1967).Google Scholar
5. Rosakis, P., Phys. Rev. Lett. 86, 95 (2001).Google Scholar
6. Holian, B. L., Voter, A. F., Wagner, N. J., Ravelo, R. J., Chen, S. P., Hoover, W. G., Hoover, C. G., Hammerberg, J. E., and Donje, T. D., Phys. Rev. A 43, 2655 (1991).Google Scholar
7. Wagner, N., Holian, B. L., and Voter, A. F., Phys. Rev. A 45, 8457 (1992).Google Scholar
8. Holian, B. L. and Ravelo, R., Phys. Rev. B 51, 11275 (1995).Google Scholar
9. Merimaa, J., Perondi, L. F., and Kaski, K., Computer Physics Communications 124, 60 (1999).Google Scholar
10. Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. van, DiNola, A., and Haak, J. R., J. Chem. Phys. 81, 3684 (1984).Google Scholar
11. Kuronen, A., Kaski, K., Perondi, L. F., and Rintala, J., Euro Physics Letters 55, 19 (2001).Google Scholar
12. Robles, M., Mustonen, V., and Kaski, K., To be published.Google Scholar
13. Weertman, J., in Mathematical Theroy of Dislocations, edited by Mura, T. (American Society of Mechanical Engineers, New York, 1969).Google Scholar
14. Chantasiriwan, S. and Milstein, F., Phys. Rev. B 53, 14080 (1996).Google Scholar