Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T08:09:16.717Z Has data issue: false hasContentIssue false

Substrate-Deposition-Teiimperatijre Dependence of Perpendicular Magnetic Anisotropy in (Fe/Pt) Compositionally-Modulated Films

Published online by Cambridge University Press:  15 February 2011

S. Iwata
Affiliation:
IBM Rcsearch Division, Almaden Research Center 650 Harry Road, San Jose, CA 95120–6099
S. S. P. Parkin
Affiliation:
IBM Rcsearch Division, Almaden Research Center 650 Harry Road, San Jose, CA 95120–6099
H. Nuri
Affiliation:
IBM Rcsearch Division, Almaden Research Center 650 Harry Road, San Jose, CA 95120–6099
T. Suzuki
Affiliation:
IBM Rcsearch Division, Almaden Research Center 650 Harry Road, San Jose, CA 95120–6099
Get access

Abstract

A systematic study on magnetic properties of (Fc/Pt) compositionally-modulated films as a function of substrate-deposition-temperature has been carried out. For films with (2.5ÅFe/18ÅPt)×40, the intrinsic perpendicular magnetic anisotropy Ku is found to increase with decreasing temperature for all the sarmples deposited at temperatures from -114 °C to 220°C during deposition. The higher the substrate-deposition-temperature, the larger the Ku values become. This result implies a possible contribution from the magne to-elastic effect to the total anisotropy. However, a major part responsible for the perpendicular anisotropy may be found in other mechanisms. The saturation magnetization is found to exceed the value for pure Fe at temperatures lower than 180K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carcia, P.F., Meinhaldt, A.D. and Suna, A., Appl. Phys. Lett., 47, 178 (1985).Google Scholar
2. Draaisma, H.J.G., de Jonge, W.J.M. and Brooder, F..J.A.den,.J. Magn. Magn. Mat., 66, 351 (1987).Google Scholar
3. Carcia, P.F., J.Appl.Phys., 63, 5066 (1988).Google Scholar
4. Katayama, T., Suzuki, Y., Nishihara, Y., Sugimoto, T. and Hashimoto, M., MMM conf., FC–07 (1990).Google Scholar
5. Sugimoto, T., Katayama, T., Suzuki, Y. and Nishihara, Y., Jpn..J. Appl. Phys., 28, L2333 (1989).Google Scholar
6. Buschow, K.H.J., van Engen, P.G. and Jongebreur, R.,.J.Magn.Magn.Mat., 38, 1 (1983).Google Scholar
7. Tsunashima, S., Hasegawa, M., Nakamura, K. and Uchiyama, S., E-MRS Spring Conference, Strasbourg, C6–P26 (1990) (To appear in.I.Magn.Magn.Mat.).Google Scholar
8. Broeder, F.J.A.den, Kuipcr, D. and Donkersloot, H.C.,.J. de Phys., C 9, 1663 (1988).Google Scholar
9. Aboaf, J.A., McGuirc, T.R., Herd, S.R. and Klokholn, E., IEEE Trans. Magn., MAG– 20, 1642 (1984).Google Scholar
10. Williams, G.M. and Pavlovic, A.S.,.J.Appl.Phys., 39, 571 (1968).Google Scholar
11. Nakamura, K., Tsunashima, S., lwata, S. and Uchiyama, S., IEEE Trans. Magn., MAG–25, 3758 (1989).Google Scholar