Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T19:54:57.986Z Has data issue: false hasContentIssue false

Luminescence of TM3+ in Gallium Arsenide Grown by Metal-Organic Vapor Phase Epitaxy

Published online by Cambridge University Press:  21 February 2011

Achim DÖrnen
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
Klaus Pressel
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
Christoph Hiller
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
Dieter Haase
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
JÜrgen Weber
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
Ferdinand Scholz
Affiliation:
4. Physikalisches Institut, Universität Stuttgart, D-W-7000 Stuttgart 80, Box 80 11 40, Federal Republic of Germany
Get access

Abstract

We investigate the excitation mechanism of the characteristic 4f luminescence 3H53H6 of Tm3+ in GaAs by photoluminescence excitation spectroscopy. This luminescence transition is also used to study the incorporation of thulium into the GaAs lattice by angular dependent Zeeman spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hüfner, S., Optical Spectra of Transparent Rare Earth Compounds (Academic, New York, 1978) p. 4.Google Scholar
2. Pomrenke, G. S., Yeo, Y. K., and Hengehold, R. L., in Long-wavelength semiconductor devices, materials, and processes, edited by Katz, A., Biefeld, R., Gunshor, R., and Malik, R. J., (Mat. Res. Soc. Proc. 216, Pittsburgh, PA, 1991) pp. 415420.Google Scholar
3. Pomrenke, G. S., Silkowski, E., Colon, J. E., Topp, D.J., Yeo, Y. K., Hengehold, R. L., J. App. Phys. 71, 1919 (1992).Google Scholar
4. Pressel, K., Weber, J., Hiller, C., Ottenwälder, D., Kürner, W., Dörnen, A., Scholz, F., Locke, K., Wiedmann, D., and Cordeddu, F., Appl. Phys. Lett. 61, 560 (1992).Google Scholar
5. Scholz, F., Weber, J., Ottenwälder, D., Pressel, K., Dörnen, A., Locke, K., Cordeddu, F., and Wiedmann, D., J. Crystal Growth 124, 470 (1992).Google Scholar
6. Scholz, F. et al. , this conference.Google Scholar
7. Koster, G. F., Dimmock, J. O., Wheeler, R. G., Statz, H., Properties of the Thirty-Two Point Groups, M.I.T. Press, Cambridge/MA, 1963).Google Scholar
8. Lea, K. R., Leask, M. J. M., Wolf, W. P., J. Phys. Chem. Solids 23, 1381 (1962).Google Scholar
9. Thonke, K., Pressel, K., Bohnert, G., Stapor, A., Weber, J., Moser, M., Molassioti, A., Hangleiter, A., and Scholz, F., Semicond. Sci. Technol. 5, 1124 (1990).Google Scholar
10. Liesert, B. J. H., Godlewski, M., Stapor, A., Gregorkiewicz, T., Ammerlaan, C. A. J., Weber, J., Moser, M., and Scholz, F., Appl. Phys. Lett. 58, 2237 (1991).Google Scholar
11. Thonke, K., Hermann, H. U., and Schneider, J., J. Phys. C: Solid State Phys. 21, 5881 (1988).Google Scholar