Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T10:56:02.640Z Has data issue: false hasContentIssue false

Late Holocene sea-surface temperature and precipitation variability in northern Patagonia, Chile (Jacaf Fjord, 44°S)

Published online by Cambridge University Press:  20 January 2017

Julio Sepúlveda*
Affiliation:
Center for Marine Environmental Sciences — MARUM and Department of Geosciences, University of Bremen, Leobener Strasse, MARUM, D-28359 Bremen, Germany
Silvio Pantoja
Affiliation:
Department of Oceanography and Center for Oceanographic Research in the eastern South Pacific, University of Concepción, P.O. Box 160-C, Concepción, Chile
Konrad A. Hughen
Affiliation:
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Sébastien Bertrand
Affiliation:
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Dante Figueroa
Affiliation:
Department of Geophysics and Center for Oceanographic Research in the eastern South Pacific, University of Concepción, P.O. Box 160-C, Concepción, Chile
Tania León
Affiliation:
Department of Oceanography and Center for Oceanographic Research in the eastern South Pacific, University of Concepción, P.O. Box 160-C, Concepción, Chile
Nicholas J. Drenzek
Affiliation:
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Carina Lange
Affiliation:
Department of Oceanography and Center for Oceanographic Research in the eastern South Pacific, University of Concepción, P.O. Box 160-C, Concepción, Chile
*
Corresponding author. Fax: +1 617 253 8630. E-mail address:juliosep@mit.edu (J. Sepúlveda).

Abstract

A high-resolution multi-proxy study including the elemental and isotopic composition of bulk organic matter, land plant-derived biomarkers, and alkenone-based sea-surface temperature (SST) from a marine sedimentary record obtained from the Jacaf Fjord in northern Chilean Patagonia (∼44°20′S) provided a detailed reconstruction of continental runoff, precipitation, and summer SST spanning the last 1750 yr. We observed two different regimes of climate variability in our record: a relatively dry/warm period before 900 cal yr BP (lower runoff and average SST 1°C warmer than present day) and a wet/cold period after 750 cal yr BP (higher runoff and average SST 1°C colder than present day). Relatively colder SSTs were found during 750–600 and 450–250 cal yr BP, where the latter period roughly corresponds to the interval defined for the Little Ice Age (LIA). Similar climatic swings have been observed previously in continental and marine archives of the last two millennia from central and southern Chile, suggesting a strong latitudinal sensitivity to changes in the Southern Westerly Winds, the main source of precipitation in southern Chile, and validating the regional nature of the LIA. Our results reveal the importance of the Chilean fjord system for recording climate changes of regional and global significance.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 45 Carleton Street, E25-623, Cambridge MA 02142, USA.
2 Present address: Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany.

References

Abarzúa, A.M., Villagrán, C., and Moreno, P.I. Deglacial and postglacial climate history in east-central Isla Grande de Chiloé, southern Chile (43°S). Quat. Res. 62, (2004). 4959.Google Scholar
Aceituno, P. On the functioning of the southern oscillation in the south American sector. Part I: Surface climate. Mon. Weather Rev. 116, (1988). 505524.Google Scholar
Ariztegui, D., Bösch, P., and Davaud, E. Dominant ENSO frequencies during the Little Ice Age in Northern Patagonia: the varved record of proglacial Lago Frías, Argentina. Quat. Int. 161, (2007). 4655.Google Scholar
Barker, P.F., Camerlenghi, A., and Acton, G.D. “Proceedings of the Ocean Drilling Program, Initial Reports, vol. 178.” Ocean Drilling Program, College Station, Texas. (1999). Google Scholar
Benn, D.I., and Clapperton, C.M. Glacial sediment-landform associations and paleoclimate during the Last Glaciation, Strait of Magellan, Chile. Quat. Res. 54, (2000). 1323.Google Scholar
Bertrand, S., Boës, X., Castiaux, J., Charlet, F., Urrutia, R., Espinoza, C., Lepoint, G., Charlier, B., and Fagel, N. Temporal evolution of sediment supply in Lago Puyehue (Southern Chile) during the last 600 yr and its climatic significance. Quat. Res. 64, (2005). 163175.Google Scholar
Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U., and Sarnthein, M. Molecular stratigraphy: a new tool for climatic assessment. Nature 320, (1986). 129133.Google Scholar
Canuel, E.A., and Martens, C.S. Reactivity of recently deposited organic matter: degradation of lipid compounds near the sediment–water interface. Geochim. Cosmochim. Acta 60, (1996). 17931806.Google Scholar
Dávila, P.M., Figueroa, D., and Müller, E. Freshwater input into the coastal ocean and its relation with the salinity distribution off austral Chile (35–55°S). Cont. Shelf Res. 22, (2002). 521534.Google Scholar
Delgado, S., (2004). Relación entre el perfil del basamiento de fiordos y canales y la morfoestructura regional en Norpatagonia. Unpublished MSc. thesis, Universidad de Chile, Chile.Google Scholar
deMenocal, P.B., and Bond, G.C. Holocene climate less stable than previously thought. EOS 78, (1997). 447450.Google Scholar
DGA, (2003). Dirección General de Aguas. Chile (http://www.dga.cl).Google Scholar
Domack, E.W., and Mayewski, P.A. Bi-polar ocean linkages: evidence from Late-Holocene Antarctic marine and Greenland ice-core records. The Holocene 9, (1999). 247251.Google Scholar
Eglinton, G., and Hamilton, R.J. Leaf epicuticular waxes. Science 156, (1967). 13221335.Google Scholar
Gruber, N. The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 variations. Follows, M., and Oguz, T. The Ocean Carbon Cycle and Climate. (2004). Kluwer Academis Publishers, London. 97148.Google Scholar
Haddad, R.I., Martens, C.S., and Farrington, J.W. Quantifying early diagenesis of fatty acids in a rapidly accumulating coastal marine sediment. Org. Geochem. 19, (1992). 205216.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Rohl, U. Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293, (2001). 13041308.CrossRefGoogle ScholarPubMed
Huang, Y., Street-Perrott, F.A., Perrott, R.A., Metzger, P., and Eglinton, G. Glacial–interglacial environmental changes inferred from molecular and compound-specific δ 13C analyses of sediments from Sacred Lake, Mt. Kenya. Geochim. Cosmochim. Acta 63, (1999). 13831404.Google Scholar
Hughen, K.A., Eglinton, T.I., Xu, L., and Makou, M. Abrupt tropical vegetation response to rapid climate changes. Science 304, (2004). 19551959.CrossRefGoogle ScholarPubMed
Jenny, B., Valero-Garcés, B.L., Urrutia, R., Kelts, K., Veit, H., Appleby, P.G., and Geyh, M. Moisture changes and fluctuations of the Westerlies in Mediterranean central Chile during the last 2000 years: the Laguna Aculeo record (33°50′S). Quat. Int. 87, (2002). 318.Google Scholar
Kreutz, K.J., Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S.I., and Pittalwala, I.I. Bipolar changes in atmospheric circulation during the Little Ice Age. Science 277, (1997). 12941296.Google Scholar
Lamb, H.H. The early medieval warm epoch and its sequel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1, (1965). 1337.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., Röhl, U., and Wefer, G. Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth Planet. Sci. Lett. 185, (2001). 369382.Google Scholar
Lamy, F., Rühlemann, C., Hebbeln, D., and Wefer, G. High- and low-latitude climate control on the position of the southern Peru–Chile current during the Holocene. Paleoceanography (2002). 17 http://dx.doi.org/10.1029/2001PA000727Google Scholar
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H.W., and Stoner, J. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, (2004). 19591962.Google Scholar
Lara, A., and Villalba, R. A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260, (1993). 11041106.Google Scholar
Luckman, B.H., and Villalba, R. Assessing the synchroneity of glacier fluctuations in the Western Cordillera of the Americas during the last millenium. Markgraf, V. Interhemispheric Climate Linkages. (2001). Academic Press, San Diego. 119137.Google Scholar
Mayewski, P.A., Rohling, E.E., Curt Stager, J., Karlén, W., Maasch, K.A., David Meeker, L., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., and Steig, E.J. Holocene climate variability. Quat. Res. 62, (2004). 243255.Google Scholar
Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 27, (1997). 213250.Google Scholar
Moberg, A., Sonechkin, D.M., Holmgren, K., Datsenko, N.M., and Karlen, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, (2005). 613617.Google Scholar
Mohtadi, M., Romero, O.E., Kaiser, J., and Hebbeln, D. Cooling of the southern high latitudes during the Medieval Period and its effect on ENSO. Quat. Sci. Rev. 26, (2007). 10551066.Google Scholar
Montecinos, A., and Aceituno, P. Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J. Climate 16, (2003). 281296.Google Scholar
Ohkouchi, N., Kawamura, K., Kawahata, H., and Taira, A. Latitudinal distributions of terrestrial biomarkers in the sediments from the central Pacific. Geochim. Cosmochim. Acta 61, (1997). 19111918.Google Scholar
Philander, S.G.H. El Niño, La Niña and the Southern Oscillation. (1990). Elsevier, New York.Google Scholar
Pizarro, G., Astoreca, R., Montecinos, V., Paredes, M.A., Alarcón, G., Uribe, P., and Guzmán, L. Patrones espaciales de la abundancia de la clorofila, su relación con la productividad primaria y la estructura de tamaños del fitoplancton en Julio y Noviembre de 2001 en la región de Aysén (43°–46° S). Ciencia y Tecnología Marina 28, (2005). 2742.Google Scholar
Prahl, F.G., Muehlhausen, L.A., and Zahnle, D.L. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim. Cosmochim. Acta 52, (1988). 23032310.Google Scholar
Rebolledo, L., Sepúlveda, J., Lange, C.B., Pantoja, S., Bertrand, S., Hughen, K., and Figueroa, D. Late Holocene marine productivity changes in Northern Patagonia-Chile inferred from a multi-proxy analysis of Jacaf channel sediments. Estuar. Coast. Shelf Sci. 80, (2008). 314322.Google Scholar
Rein, B., Lückge, A., and Sirocko, F. A major Holocene ENSO anomaly during the Medieval period. Geophys. Res. Lett. (2004). 31 http://dx.doi.org/10.1029/2004GL020161Google Scholar
Sachse, D., Radke, J., and Gleixner, G. δD values of individual n-alkanes from terrestrial plants along a climatic gradient — implications for the sedimentary biomarker record. Org. Geochem. 37, (2006). 469483.Google Scholar
Salamanca, M.A., and Jara, B. Distribución y acumulación de plomo (Pb y 210Pb) en sedimentos de los fiordos de la XI región de Chile. Cienc. Tecnol. Mar 26, (2003). 6171.Google Scholar
Schneider, C., and Gies, D. Effects of El Nino-southern oscillation on southernmost South America precipitation at 53° S revealed from NCEP-NCAR reanalyses and weather station data. Int. J. Climatol. 24, (2004). 10571076.Google Scholar
Sepúlveda, J., Pantoja, S., Hughen, K., Lange, C., Gonzalez, F., Muñoz, P., Rebolledo, L., Castro, R., Contreras, S., Ávila, A., Rossel, P., Lorca, G., Salamanca, M., and Silva, N. Fluctuations in export productivity over the last century from sediments of a southern Chilean fjord (44°S). Estuar. Coast. Shelf Sci. 65, (2005). 587600.Google Scholar
Sepúlveda, J., (2005). Terrigenous input in Northern Patagonia fjords: geochemical evidence from recent and Late Holocene sediments. Unpublished MSc. thesis, Universidad de Concepción, Chile.Google Scholar
Shevenell, A.E., and Kennett, J.P. Antarctic Holocene climate change: a benthic foraminiferal stable isotope record from Palmer Deep. Paleoceanography (2002). 17 http://dx.doi.org/10.1029/2000PA000596Google Scholar
Silva, N., and Prego, R. Carbon and nitrogen spatial segregation and stoichiometry in the surface sediments of Southern Chilean inlets (41°–56°S). Estuar. Coast. Shelf Sci. 55, (2002). 763775.Google Scholar
Silva, N., Sievers, H., and Prado, R. Caracteristicas oceanográficas y una proposición de circulación para algunos canales australes de Chile entre 41°20′S y 46°40′S. Rev. Biol. Mar. 30, (1995). 207254.Google Scholar
Silva, N., Maturana, J., Sepúlveda, J.I., and Ahumada, R. Materia orgánica, C y N, su distribución y estequiometría, en sedimentos superficiales de la región norte de los fiordos y canales australes de Chile (crucero CIMAR-FIORDO 1). Cienc. Tecnol. Mar 21, (1998). 4974.Google Scholar
Stine, S. Extreme and persistent drought in California and Patagonia during mediaeval time. Nature 369, (1994). 546549.Google Scholar
Stine, S. On the Medieval climatic anomaly. Curr. Anthropol. 41, (2000). 627628.Google Scholar
Strub, P.T., Mesías, J., Montecino, V., Rutllant, J., and Salinas, S. Coastal ocean circulation off Western South America. Coastal segment (6, E). Robinson, R.A., and Brink, K.H. The Sea. (1998). J. Wiley & Sons, New York. 273313.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Dansgaard, W., and Grootes, P.M. The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya Ice Cap. Science 234, (1986). 361364.Google Scholar
Thornton, S.F., and McManus, J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuar. Coast. Shelf Sci. 38, (1994). 219233.Google Scholar
Villagrán, C. Late Quaternary vegetation of southern Isla Grande de Chiloé, Chile. Quat. Res. 29, (1988). 294306.Google Scholar
Villalba, R. Tree-ring and glacial evidence for the medieval warm epoch and the little ice age in southern South America. Clim. Change 26, (1994). 183197.Google Scholar