Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T10:40:02.260Z Has data issue: false hasContentIssue false

Compatibility of Atmospheric 14CO2 Measurements: Comparing the Heidelberg Low-Level Counting Facility to International Accelerator Mass Spectrometry (AMS) Laboratories

Published online by Cambridge University Press:  19 September 2016

Samuel Hammer*
Affiliation:
Institut für Umweltphysik, Heidelberg University, Germany
Ronny Friedrich
Affiliation:
Curt Engelhorn Center for Archaeometry gGmbH, Mannheim, Germany
Bernd Kromer
Affiliation:
Institut für Umweltphysik, Heidelberg University, Germany Curt Engelhorn Center for Archaeometry gGmbH, Mannheim, Germany
Alexander Cherkinsky
Affiliation:
Center for Applied Isotope Studies, University of Georgia, USA
Scott J Lehman
Affiliation:
INSTAAR, University of Colorado, Boulder, Colorado, USA
Harro A J Meijer
Affiliation:
Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, the Netherlands
Toshio Nakamura
Affiliation:
Center for Chronological Research, Nagoya University, Japan
Vesa Palonen
Affiliation:
Department of Physics, University of Helsinki, Finland
Ron W Reimer
Affiliation:
14CHRONO Centre for Climate, the Environment and Chronology,School of Geography, Archaeology and Palaeoecology, Queen’s University Belfast, UK
Andrew M Smith
Affiliation:
Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
John R Southon
Affiliation:
Earth System Science Department, University of California, Irvine, California 92612, USA
Sönke Szidat
Affiliation:
Department of Chemistry and Biochemistry & Oeschger Centre for Climate Change Research, University of Bern, Switzerland
Jocelyn Turnbull
Affiliation:
National Isotope Centre, GNS Science New Zealand and CIRES, University of Colorado, USA
Masao Uchida
Affiliation:
National Institute for Environmental Studies, Tsukuba, Japan
*
*Corresponding author. Email: shammer@iup.uni-heidelberg.de.

Abstract

Combining atmospheric Δ14CO2 data sets from different networks or laboratories requires secure knowledge on their compatibility. In the present study, we compare Δ14CO2 results from the Heidelberg low-level counting (LLC) laboratory to 12 international accelerator mass spectrometry (AMS) laboratories using distributed aliquots of five pure CO2 samples. The averaged result of the LLC laboratory has a measurement bias of –0.3±0.5‰ with respect to the consensus value of the AMS laboratories for the investigated atmospheric Δ14C range of 9.6 to 40.4‰. Thus, the LLC measurements on average are not significantly different from the AMS laboratories, and the most likely measurement bias is smaller than the World Meteorological Organization (WMO) interlaboratory compatibility goal for Δ14CO2 of 0.5‰. The number of intercomparison samples was, however, too small to determine whether the measurement biases of the individual AMS laboratories fulfilled the WMO goal.

Type
Advances in Physical Measurement Techniques
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

REFERENCES

Buizert, C, Martinerie, P, Petrenko, VV, Severinghaus, JP, Trudinger, CM, Witrant, E, Rosen, JL, Orsi, AJ, Rubino, M, Etheridge, DM, Steele, LP, Hogan, C, Laube, JC, Sturges, WT, Levchenko, VA, Smith, AM, Levin, I, Conway, TJ, Dlugokencky, EJ, Lang, PM, Kawamura, K, Jenk, TM, White, JWC, Sowers, T, Schwander, J, Blunier, T. 2012. Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland. Atmospheric Chemistry and Physics 12:42594277.Google Scholar
Francey, RJ, Trudinger, CM, van der Schoot, M, Law, RM, Krummel, PB, Langenfelds, RL, Steele, LP, Allison, C, Stavert, A, Andres, R, Rodenbeck, C. 2013. Atmospheric verification of anthropogenic CO2 emission trends. Nature Climate Change 3(5):520524.Google Scholar
Gelencsér, A, May, B, Simpson, D, Sánchez-Ochoa, A, Kasper-Giebl, A, Puxbaum, H, Caseiro, A, Pio, C, Legrand, M. 2007. Source apportionment of PM2.5 organic aerosol over Europe: primary/secondary, natural/anthropogenic, and fossil/biogenic origin. Journal of Geophysical Research 112:D23S04.Google Scholar
Graven, HD, Guilderson, TP, Keeling, RF. 2012. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research 117:D02303.Google Scholar
Graven, H, Xu, X, Guilderson, TP, Keeling, RF, Trumbore, SE, Tyler, S. 2013. Comparison of independent delta 14CO2 records at Point Barrow, Alaska. Radiocarbon 55(2–3):15411545.Google Scholar
Kromer, B, Münnich, KO. 1992. CO2 gas proportional counting in radiocarbon dating—review and perspective. In: Taylor RE, Long A, Kra S, editors. Radiocarbon after Four Decades. New York: Springer. p 184197.Google Scholar
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steel, LP, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus B 62:2646.Google Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):12611272.CrossRefGoogle Scholar
Levin, I, Münnich, KO, Weiss, W. 1980. The effect of anthropogenic CO2 and 14C sources on the distribution of 14CO2 in the atmosphere. Radiocarbon 22(2):379391.Google Scholar
Levin, I, Kromer, B, Hammer, S. 2013. Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B 65:20092.Google Scholar
Lindahl, BD, Ihrmark, K, Boberg, J, Trumbore, SE, Högberg, P, Stenlid, J, Finlay, RD. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist 173(3):611620.CrossRefGoogle Scholar
Miller, J, Lehman, S, Wolak, C, Turnbull, J, Dunn, G, Graven, H, Keeling, R, Meijer, H, Aerts-Bijma, A, Palstra, S, Smith, A, Allison, C, Southon, J, Xu, X, Nakazawa, T, Aoki, S, Nakamura, T, Guilderson, T, LaFranchi, B, Mukai, H, Terao, Y, Uchida, M, Kondo, M. 2013. Initial results of an intercomparison of AMS-based atmospheric 14CO2 measurements. Radiocarbon 55(2–3):14751483.Google Scholar
Naegler, T, Ciais, P, Rodgers, KB, Levin, I. 2006. Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the oceans. Geophysical Research Letters 33:L11802.Google Scholar
Nydal, R, Lövseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(C6):36213642.Google Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C Intercomparison Exercise 1990. Radiocarbon 34(3):506519.Google Scholar
Santos, GM, De La Torre, HAM, Boudin, M, Bonafini, M, Saverwyns, S. 2015. Improved radiocarbon analyses of modern human hair to determine the year-of-death by cross-flow nanofiltered amino acids: common contaminants, implications for isotopic analysis, and recommendations. Rapid Communications in Mass Spectrometry 29(19):17651773.Google Scholar
Scott, E, Cook, G, Naysmith, P, Bryant, C, O’Donnell, D. 2007. A report on Phase 1 of the 5th International Radiocarbon Intercomparison (VIRI). Radiocarbon 49(2):409426.Google Scholar
Spalding, KL, Bergmann, O, Alkass, K, Bernard, S, Salehpour, M, Huttner, HB, Possnert, G. 2013. Dynamics of hippocampal neurogenesis in adult humans. Cell 153(6):12191227.Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Trumbore, SE. 1993. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles 7(2):275290.Google Scholar
Turnbull, JC, Lehman, SJ, Miller, JB, Sparks, RJ, Southon, JR, Tans, PP. 2007. A new high precision 14CO2 time series for North American continental air. Journal of Geophysical Research 112:D11310.Google Scholar
Turnbull, J, Rayner, P, Miller, J, Naegler, T, Ciais, P, Cozic, A. 2009. On the use of 14CO2 as a tracer for fossil fuel CO2: quantifying uncertainties using an atmospheric transport model. Journal of Geophysical Research 114:D22302.Google Scholar
WMO-GAW (World Meteorological Organization–Global Atmosphere Watch). 2013. 17th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases, and Related Tracer Measurement Techniques. Volume 213, Global Atmosphere Watch. Beijing, China, 10–14 June 2013.Google Scholar