Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T05:21:29.903Z Has data issue: false hasContentIssue false

Goniometry Versus Profilometry Studies of Contact Angle for PEDOT:PSS Deposited Onto Silicon and Fused Silica Substrates

Published online by Cambridge University Press:  22 December 2015

Kenneth D. Shaughnessy
Affiliation:
Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22807
Emma G. Langford
Affiliation:
Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22807
Chester Szwejkowski
Affiliation:
Departmnet of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904
Patrick Hopkins
Affiliation:
Departmnet of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904
Costel Constantin*
Affiliation:
Department of Physics and Astronomy, James Madison University, Harrisonburg, VA 22807
*
Get access

Abstract

This paper presents a comparative study on the effects of plasma type and duration on the contact angle of silicon (Si) and fused silica (FS) for the deposition of Poly (3,4 ethyldioxythiophene) Polystyrene Sulfonate (PEDOT:PSS) via drop casting. The two methods used to measure contact angles were goniometry and profilometry. Both methods agreed that the lowest contact angles were given by: 1) 30 seconds in nitrogen/oxygen mix for Si substrates, and 2) 10 minutes in pure oxygen plasma for FS substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Groenendaal, L.B., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R., Adv. Mater . 12, 481 (2000).Google Scholar
Nardes, A.M., Kemerink, M., de Kok, M.M., Vinken, E., Maturova, K., and Janssen, R.A.J., Organic Electronics 9, 727 (2008).Google Scholar
Granstrom, M., Berggren, M., and Ingana, O., Science 267, 1479 (1995).CrossRefGoogle Scholar
Dhanabalan, , van Duren, J.K.J., van Hal, P.A., van Dongen, J.L.J., and Janssen, R.A.J., Adv. Funct. Mater . 11, 255 (2001).3.0.CO;2-I>CrossRefGoogle Scholar
Jonas, F. and Wolf, G.D., U.S. Patent No. 05403467 (1995).Google Scholar
Setiadi, D., He, Z., Hajto, J., and Binnie, T.D., Infrared Phys. Technol . 40, 267 (1999).CrossRefGoogle Scholar
Kato, Y., Jung, M-C, Lee, M. V., Qi, Y., Organic Electronics 15, 721 (2014).Google Scholar
Petasch, W., Kegel, B., Surface and Coatings Technology 97, 176181 (1997)Google Scholar
Petri, Richard, Brault, Pascal, Journal of Applied Physics 75, 7498 (1994).Google Scholar