Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T06:18:21.444Z Has data issue: false hasContentIssue false

Abundances of Iron-Group Elements in Planetary Nebulae and Consequences for Chemical Enrichment

Published online by Cambridge University Press:  08 August 2017

Harriet L. Dinerstein
Affiliation:
Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205, U.S.A. email: harriet@astro.as.utexas.edu
T. R. Geballe
Affiliation:
Gemini Observatory, 670 N Aohoku Place, Hilo, HI 96720-2700, U.S.A. email: tgeballe@gemini.edu
N. C. Sterling
Affiliation:
Deptartment of Physics, University of West Georgia, 105 Boyd Building 1601 Maple Street, Carrollton, GA 30118-0001, U.S.A. email: nsterlin@westga.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have developed a method for determining elemental Fe-group abundances in planetary nebulae using an infrared emission line of Zn, the least refractory Fe-group species. Many planetary nebulae, particularly those of the Milky Way’s thick disk and bulge, display subsolar [Fe/H] (as inferred from Zn) although their abundances of α elements such as O, S, and Ar are nearly solar. We discuss the implications for determining enhancements of species synthesized by the progenitor star during the AGB (e.g., s-process products), and for galactic chemical evolution in view of the metallicity dependence of AGB nucleosynthetic yields.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bensby, T., Feltzing, S., & Oey, M. S., 2014, A&A, 562, 71 Google Scholar
Delgado-Inglada, G. & Rodrìguez, M., 2014, ApJ, 784, 173 CrossRefGoogle Scholar
Dinerstein, H. L., 2001, ApJ (Letters), 550, L223 CrossRefGoogle Scholar
Dinerstein, H. L. & Geballe, T. R., 2001, ApJ, 562, 515 CrossRefGoogle Scholar
Dinerstein, H. L., Geballe, T. R., & Sterling, N. C. 2011, AAS, id. 217.256.04Google Scholar
Dinerstein, H. L., Geballe, T. R., & Sterling, N. C. 2014, AAS, id. 223.353.29Google Scholar
Dinerstein, H. L., Geballe, T. R., & Sterling, N. C. 2015, IAUGA, Meeting 29, id. 2255718Google Scholar
Freeman, K. & Bland-Hawthorn, J., 2002, ARAA, 40, 487 CrossRefGoogle Scholar
Karakas, A. I. & Lattanzio, J. C. 2014, Pub. Astr. Soc. Australia, 31, id. 30CrossRefGoogle Scholar
Likkel, L., Dinerstein, H. L., Lester, D. F., Kindt, D. F., & Bartig, K. A., 2006, AJ, 131, 1515 Google Scholar
Peimbert, M. 1978, in: Y. Terzian (ed.), Planetary Nebulae: Observations and Theory, IAU Symposium No. 76 (Dordrecht: Reidel), p. 216Google Scholar
Smith, C. L. 2014, Ph.D., University of ManchesterGoogle Scholar
Smith, C. L., Zijlstra, A. A., & Dinerstein, H. L., 2014, MNRAS, 441, 3161 Google Scholar
Sterling, N. C., Dinerstein, H. L., Bowers, C. W., & Redfield, S., 2005, ApJ, 625, 368 CrossRefGoogle Scholar
Sterling, N. C. & Dinerstein, H. L., 2008, ApJS, 174, 158 Google Scholar
Sterling, N. C., Dinerstein, H. L., Kaplan, K. F., & Bautista, M. A., 2016, ApJ (Letters), 819, L9 Google Scholar
Sterling, N. C., Porter, R. L., & Dinerstein, H. L. 2015, ApJS, 218, id. 25 Google Scholar
Tinsley, B. M., 1979, ApJ, 229, 1046 Google Scholar
Welty, D. E., Hobbs, L. M., Lauroesch, J. T., Morton, D. C., Spitzer, L., & York, D. G., 1999, ApJS, 124, 465 Google Scholar
Wood, J. L., Dinerstein, H. L., & Geballe, T. R. 2007, BAAS, 39, 113, id. 210.16.06Google Scholar