Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T19:26:21.009Z Has data issue: false hasContentIssue false

Sea Urchin Mineralized Tissue

Published online by Cambridge University Press:  15 February 2011

S.R. Stock
Affiliation:
Institute for Bioengineering and Nanoscience in Advanced Medicine and
K. Ignatiev
Affiliation:
Institute for Bioengineering and Nanoscience in Advanced Medicine and
F. De Carlo
Affiliation:
Advanced Photon Source, Argonne National Lab IL USA
M.K. Stock
Affiliation:
New Trier Township High School, Winnetka IL USA
A. Veis
Affiliation:
Department of Cell and Molecular Biology, Northwestern University Chicago IL USA
Get access

Abstract

Sea urchin ossicles are structural analogs of mammalian bones and serve as a model biomineral system. Sea urchins employ as wide a range of composite reinforcement strategies as are seen in engineering composites, and, studied as materials, teeth (and other ossicles) from different echinoid families illustrate combinations of reinforcement parameters and toughening mechanisms providing good functionality. Studying ossicles from different sea urchin families, therefore, is one method of probing the composite design space available to sea urchins, and this offers important guidance for engineering of structural tissue. This report is part of a larger multi-mode x-ray investigation employing microCT, both synchrotron and laboratory sources, phase contrast radiography and transmission microbeam diffraction mapping; voxels (volume elements) approaching 1 μm3 can be interrogated noninvasively in millimeter sized samples. Only microCT results are presented below; these focus on sea urchin lanterns (jaw structure) and spines of a variety of sea urchin types and serve to illustrate how this sort of integrated approach might be applied to bone.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. DJ, Veis, TM, Alberger, Clohisy, J, Rahima, M, Sabsay, B, Veis, A (1986) J Exp Zool 240, 3546.Google Scholar
2. Veis, A, Barss, J, Rahima, M, Stock, S (2002) Microsc Res Tech 59, 342351.Google Scholar
3. SJS, Salter (1861) Phil Trans Roy Soc (Lond) 151, 387407; pl. VI-VIII.Google Scholar
4. Giesbrecht, W (1880) Morph Jahrb 6, 79105, Tf II-V.Google Scholar
5. Märkel, K (1969) Z Morph Tiere 66, 150.Google Scholar
6. Märkel, K (1969) Z Morph Tiere 66, 189211.Google Scholar
7. Märkel, K (1970) Annot Zool Jap 43, 188199.Google Scholar
8. Märkel, K, Titschack, H (1969) Z Morph Tiere 64, 179200.Google Scholar
9. Märkel, K, Gorny, P (1973) Z Morph Tiere 75, 223242.Google Scholar
10. Märkel, K, Gorny, P, Abraham, K (1976) Fort Zool 24, 103114.Google Scholar
11. Kniprath, E (1974) Calcif Tiss Res 14, 211228.Google Scholar
12. Jensen, M (1981) Vidensk Meddr dansk naturh Foren 143, 799.Google Scholar
13. DM, Candia Carnevali, Bonasoro, F, Melone, G (1991) Bull Zool 58, 142.Google Scholar
14. RZ, Wang, Addadi, L, Weiner, S (1997) Phil Trans Roy Soc (Lond) B 352, 469480.Google Scholar
15. DM, Raup (1959) J Geol 67, 661674.Google Scholar
16. Towe, K (1967) Science 157, 148150.Google Scholar
17. Donnay, G, DL, Pawson (1969) Science 166, 11471150.Google Scholar
18. HU, Nissen (1969) Science 166, 11501152.Google Scholar
19. SR, Stock, Barss, J, Dahl, T, Veis, A, JD, Almer (2002) J Struct Biol 139, 112.Google Scholar
20. SR, Stock, Barss, J, Dahl, T, Veis, A, JD, Almer, De Carlo, F (2003) Calcif Tiss Int in press.Google Scholar
21. JH, Schroeder, EJ, Dwornik, JJ, Papike (1969) Bull Geol Soc Am 80, 16131616.Google Scholar
22. Märkel, K, Kubanek, F, Willgallis, A (1971) Z Zellforsch 119, 355377.Google Scholar
23. RZ, Wang (1998) J Am Ceram Soc 81, 10371040.Google Scholar
24. Berman, A, Addadi, L, Weiner, S (1988) Nature 331, 546548.Google Scholar
25. Berman, A, Addadi, L, Å, Kvick, Leiserowitz, L, Nelson, M, Weiner, S (1990) Science 250, 664667.Google Scholar
26. Berman, A, Hanson, J, Leiserowitz, L, TF, Koetzle, Weiner, S, Addadi, L (1993) Science 259, 776779.Google Scholar
27. Su, X, Kamat, S, AH, Heuer (2000) J Mater Sci 35, 55455551.Google Scholar
28. SR, Stock, Nagaraja, S, Barss, J, Dahl, T, Veis, A (2003) J Struct Biol 141, 921.Google Scholar
29.Scanco Medical, www.scanco.chGoogle Scholar
30. Wang, Y, De Carlo, F, Mancini, D, McNulty, I, Tieman, B, Bresnahan, J, Foster, I, Insley, J, Lane, P, von Laszewski, G, Kesselman, C, M-H, Su, Thiebaux, M (2001) Rev Sci Instrum 72, 20622068.Google Scholar
31. Carpenter, W (1847) Brit Assoc Adv Sci 17, pt II, 93134, Pl. I-XX.Google Scholar
32. TA, Ebert (1968) Ecology 49, 10751091.Google Scholar
33. BM, Heatfield (1971) J Morph 134, 5790.Google Scholar
34. JS, Pearse, Pearse, VB (1975) Amer Zool 15, 731735.Google Scholar
35. RT, Jackson (1912) Memoirs Boston Soc Natur Hist 7, 1491, Pl. 1-72.Google Scholar
36. AB, Smith (1984) Echinoid Palaeobiology, George Allen & Unwin, London.Google Scholar
37. SR, Stock, Nagaraja, S, Barss, J, Dahl, T, Veis, A (2003) J Struct Biol 141, 921.Google Scholar
38. AB, Smith (1980) “Stereom microstructure of the echinoid test,” Special papers in palaeontology No. 25, London, The Palaeontology Association, 81 pp.Google Scholar
39. AB, Smith (1990) in Skeletal biomineralization: Patterns, processes and evolutionary trends, Carter, J.G., Ed., New York, Van Nostrand Reinhold, Ch. 17 of Vol I, 413443 and Vol II, Pt. 8, pp. 69-71 and Pl. 170-175.Google Scholar
40. YS, Chu, Liu, C, DC, Mancini, De Carlo, F, AT, Macrander, Lai, B, Shu, D (2002) Rev Sci Instrum 73, 14851487.Google Scholar
41. TA, Ebert (1980) Bull Marine Sci 30 (1980) 467474.Google Scholar
42. DuBois, P, Ameye, L (2001) Microsc Res Tech 55, 427437.Google Scholar
43. LB, Gower, DJ, Odom (2000) 210, 719734.Google Scholar