Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T17:23:19.779Z Has data issue: false hasContentIssue false

Tunneling Current-Distance Characteristic of Scanning Vibrating Probe / 1-Alkanethiol Self-Assembled Monolayer (SAM) / Au (111) Structure

Published online by Cambridge University Press:  01 February 2011

Yuhsuke Yasutake
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2–12–1 O-okayama, Meguro-ku, Tokyo 152–8552, Japan
Yasuo Azuma
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2–12–1 O-okayama, Meguro-ku, Tokyo 152–8552, Japan
Kouhei Nagano
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2–12–1 O-okayama, Meguro-ku, Tokyo 152–8552, Japan
Yutaka Majima
Affiliation:
Department of Physical Electronics, Tokyo Institute of Technology, 2–12–1 O-okayama, Meguro-ku, Tokyo 152–8552, Japan Organization and Function, PRESTO, Japan Science and Technology Agency, 2–12–1 O-okayama, Meguro-ku, Tokyo 152–8552, Japan
Get access

Abstract

We report measurements of the tunneling current – distance (I-d) dependence above alkanethiol self-assembled monolayers (SAMs) on Au (111) substrates with high probe voltage. From the semilogarithmic I-d plots of hexanethiol and octanethiol SAMs, a kink in the tunneling current slopes is clearly observed, which shows the point where the STM tip contacts the end of the SAMs. The conductance decay constants of the vacuum layer and the alkanethiol SAMs are estimated from the tunneling current slopes. We also discuss the contact conductance of alkanethiol SAMs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gorelik, L. Y., Isacsson, A., Voinova, M. V., Kasomo, B., Shekhter, R. I. and Jonson, M., Phys. Rev. Lett. 80, 4526 (1998).Google Scholar
2. Park, H., Park, J. Lim, A. K. L., Anderson, E. H., Alivisatos, A. P. and McEuen, P. L., Nature. 407, 57 (2000).Google Scholar
3. Erbe, A., Weiss, C., Zwerger, W. and Blick, R. H., Phys. Rev. Lett. 87, 096106 (2001).Google Scholar
4. Nishiguchi, N., Phys. Rev. B. 65, 035403 (2002).Google Scholar
5. Bumm, L. A., Arnold, J. J., Dunbar, T. D., Allara, D. L., and Weiss, P. S., J. Phys. Chem. B. 103, 8122 (1999).Google Scholar
6. Wang, D. W., Tian, F., and Lu, J. G., J. Vac. Sci. Technol. B. 20, 60 (2002).Google Scholar
7. Wold, D. J., and Frisbie, C. D., J. Am. Chem. Soc, 122, 2970 (2000)Google Scholar
8. Kaun, C. C., Guo, H., Nano Lett. 3, 1521 (2003).Google Scholar
9. Wang, W., Lee, T., Reed, M. A., Physica E. 19, 117 (2003).Google Scholar
10. Majima, Y., Oyama, Y. and Iwamoto, M., Phys. Rev. B. 62, 1971 (2000).Google Scholar
11. Majima, Y., Miyamoto, S., Oyama, Y. and Iwamoto, M., Jpn. J. Appl. Phys. 37, 4557 (1998).Google Scholar
12. Oyama, Y., Majima, Y., and Iwamoto, M., J. Appl. Phys. 86, 7087 (1999).Google Scholar
13. Majima, Y., Uehara, S., Masuda, T., Okuda, A. and Iwamoto, M., Thin Solid Films. 393, 204 (2001).Google Scholar
14. Majima, Y., Nagano, K. and Okuda, A., Jpn. J. Appl. Phys. 41, 5381 (2002).Google Scholar
15. Nagano, K., Okuda, A. and Majima, Y., Appl. Phys. Lett. 81, 544 (2002).Google Scholar
16. Azuma, Y., Nagano, K. and Majima, Y., Jpn. J. Appl. Phys. 42, 2458 (2003).Google Scholar
17. Poirier, G. E., Chem. Rev. 97, 1117 (1997).Google Scholar
18. Fenter, P., Schreiber, F., Berman, L., Scoles, G., Eisenberger, P. and Bedzyk, M. J., Surf. Sci. 412/413, 213 (1998).Google Scholar
19. Kluth, G. J., Carraro, C. and Maboudian, R., Phys. Rev. B. 59, R10449 (1999).Google Scholar
20. Yourdshahyan, Y. and Rappe, M., J. Chem. Phys. 117, 825 (2002).Google Scholar