Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T06:14:37.568Z Has data issue: false hasContentIssue false

The Effect of Endogenous and Synthetic Estrogens on Whole Blood Clot Formation and Erythrocyte Structure

Published online by Cambridge University Press:  08 May 2017

Albe C. Swanepoel*
Affiliation:
Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
Odette Emmerson
Affiliation:
Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
Etheresia Pretorius
Affiliation:
Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
*
*Corresponding author. albe.swanepoel@up.ac.za
Get access

Abstract

As erythrocyte and estrogens interact so closely and erythrocytes can indicate the healthiness of an individual, it is essential to investigate the effects of natural estrogens as well as synthetic estrogens on these cells. Whole blood samples were used for thromboelastography (TEG), light microscopy (LM), and scanning electron microscopy (SEM) investigation. Viscoelastic investigation with TEG revealed that estrogens affected the rate of clot formation without any significant effect on the strength or stability of the clot. Axial ratio analysis with LM showed a statistically significant increase in number of erythrocytes with decreased roundness. Morphological analysis with SEM confirmed the change in erythrocyte shape and revealed both ultrastructural membrane changes and erythrocyte interactions. As erythrocyte shape and membrane flexibility correlates to physiological functioning of these cells in circulation, these changes, indicative of possible eryptosis brought on by estrogens, when experienced by individuals with an underlying inflammatory or hematological illness, could impair erythrocyte functioning and even result in obstructions in circulation. In conclusion, we suggest that whole blood analysis with viscoelastic and morphological techniques could be used as assessment of the hematological healthiness of individuals using estrogens.

Type
Biological Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buchan, P.C. & Macdonald, H.N. (1980). Altered haemorheology in oral-contraceptive users. Br Med J 280(6219), 978979.Google Scholar
Burton, J.L. (1967). Effect of oral contraceptives on erythrocyte sedimentation rate in healthy young women. Br Med J 3(5559), 214215.CrossRefGoogle ScholarPubMed
Collins, F.S. & Varmus, H. (2015). A new initiative on precision medicine. New Eng J Med 372(9), 793795.CrossRefGoogle ScholarPubMed
de Villiers, S., Swanepoel, A., Bester, J. & Pretorius, E. (2016). Novel diagnostic and monitoring tools in stroke: An individualized patient-centered precision medicine approach. J Atheroscler Thromb 23(5), 493504.Google Scholar
Diez-Silva, M., Dao, M., Han, J., Lim, C.-T. & Suresh, S. (2010). Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull 35(5), 382388.Google Scholar
Doucet, D.R., Bonitz, R.P., Feinman, R., Colorado, I., Ramanathan, M., Feketeova, E., Condon, M., Machiedo, G.W., Hauser, C.J., Xu, D.Z. & Deitch, E.A. (2010). Estrogenic hormone modulation abrogates changes in red blood cell deformability and neutrophil activation in trauma hemorrhagic shock. J Trauma 68(1), 3541.Google Scholar
Golden, G.A., Mason, R.P., Tulenko, T.N., Zubenko, G.S. & Rubin, R.T. (1999). Rapid and opposite effects of cortisol and estradiol on human erythrocyte Na+,K+-ATPase activity: Relationship to steroid intercalation into the cell membrane. Life Sci 65(12), 12471255.CrossRefGoogle ScholarPubMed
Golden, G.A., Rubin, R.T. & Mason, R.P. (1998). Steroid hormones partition to distinct sites in a model membrane bilayer: Direct demonstration by small-angle X-ray diffraction. Biochim Biophys Acta 1368(2), 161166.CrossRefGoogle Scholar
Jendryczko, A., Tomala, J. & Janosz, P. (1993). Effects of two low-dose oral contraceptives on erythrocyte superoxide dismutase, catalase and glutathione peroxidase activities. Zentralbl Gynakol 115(11), 469472.Google ScholarPubMed
Koefoed, P. & Brahm, J. (1994). The permeability of the human red cell membrane to steroid sex hormones. Biochim Biophys Acta 1195(1), 5562.Google Scholar
Kowalska, K. & Milnerowicz, H. (2016). Pro/antioxidant status in young healthy women using oral contraceptives. Environ Toxicol Pharmacol 43, 16.CrossRefGoogle ScholarPubMed
Lang, K.S., Lang, P.A., Bauer, C., Duranton, C., Wieder, T., Huber, S.M. & Lang, F. (2005). Mechanisms of suicidal erythrocyte death. Cell Physiol Biochem 15(5), 195202.Google Scholar
Le Petit-Thevenin, J., Lerique, B., Nobili, O. & Boyer, J. (1991). Estrogen modulates phospholipid acylation in red blood cells: Relationship to cell aging. Am J Physiol 261(3 Pt 1), C423C427.Google Scholar
Le Petit-Thevenin, J., Rahmani-Jourdheuil, D., Nobili, O. & Boyer, J. (1986). Ethynylestradiol alters lipid composition and phosphatidylethanolamine metabolism in red blood cells. J Steroid Biochem 25(4), 601603.CrossRefGoogle ScholarPubMed
Mladenovic, J., Ognjanovic, B., Dordevic, N., Matic, M., Knezevic, V., Stajn, A. & Saicic, Z. (2014). Protective effects of oestradiol against cadmium-induced changes in blood parameters and oxidative damage in rats. Arh Hig Rada Toksikol 65(1), 3746.CrossRefGoogle ScholarPubMed
Moro, L., Reineri, S., Piranda, D., Pietrapiana, D., Lova, P., Bertoni, A., GRAZIANI, A., DEFILIPPI, P., CANOBBIO, I., TORTI, M. & SINIGAGLIA, F. (2005). Nongenomic effects of 17B-estradiol in human platelets: Potentiation of thrombin-induced aggregation through estrogen receptor B and Src kinase. Blood 105(1), 115121.Google Scholar
Nielsen, V.G. (2008). Beyond cell based models of coagulation: Analyses of coagulation with clot “lifespan” resistance-time relationships. Thromb Res 122(2), 145152.Google Scholar
Nielsen, V.G., Gurley, W.Q. Jr. & Burch, T.M. (2004). The impact of factor XIII on coagulation kinetics and clot strength determined by thrombelastography. Anesth Analg 99(1), 120123.Google Scholar
Nielsen, V.G. & Pretorius, E. (2014). Iron and carbon monoxide enhance coagulation and attenuate fibrinolysis by different mechanisms. Blood Coagul Fibrinolysis 25(7), 695702.Google Scholar
Ogunro, P.S., Bolarinde, A.A., Owa, O.O., Salawu, A.A. & Oshodi, A.A. (2014). Antioxidant status and reproductive hormones in women during reproductive, perimenopausal and postmenopausal phase of life. Afr J Med Med Sci 43(1), 4957.Google Scholar
Pretorius, E., Bester, J., Vermeulen, N., Lipinski, B., Gericke, G.S. & Kell, D.B. (2014). Profound morphological changes in the erythrocytes and fibrin networks of patients with hemochromatosis or with hyperferritinemia, and their normalization by iron chelators and other agents. PLoS One 9(1), e85271.CrossRefGoogle ScholarPubMed
Pretorius, E., Olumuyiwa-Akeredolu, O.O., Mbotwe, S. & Bester, J. (2016). Erythrocytes and their role as health indicator: Using structure in a patient-orientated precision medicine approach. Blood Rev 30(4), 263274.Google Scholar
Sheng-Huang, C., Chieh-Hsin, C., Mu-Chun, Y., Wen-Tung, H., Chia-Ying, H., Ya-Ting, H., Wan-Ling, S.U., Jiuan-Jen, S., Chih-Yang, H. & Jer-Yuh, L. (2015). Effects of estrogen on glutathione and catalase levels in human erythrocyte during menstrual cycle. Biomed Rep 3(2), 266268.CrossRefGoogle ScholarPubMed
Stokes, G.S., Monaghan, J.C., Middleton, A., Gunn, J. & Marwood, J.F. (1985). Altered erythrocyte cation transport related to hypertension or oral contraception. Klin Wochenschr 63(Suppl 3), 4244.Google ScholarPubMed
Swanepoel, A.C., Lindeque, B.G., Swart, P.J., Abdool, Z. & Pretorius, E. (2014). Estrogen causes ultrastructural changes of fibrin networks during the menstrual cycle: A qualitative investigation. Microsc. Res. Tech. 77, 594601.Google Scholar
Swanepoel, A.C., Visagie, A., de Lange, Z., Emmerson, O., Nielsen, V.G. & Pretorius, E. (2016a). The clinical relevance of altered fibrinogen packaging in the presence of 17beta-estradiol and progesterone. Thromb Res 146, 2334.CrossRefGoogle Scholar
Swanepoel, A.C., Visagie, A. & Pretorius, E. (2016b). Synthetic hormones and clot formation. Microsc Microanal 22(4), 878886.Google Scholar
Tsuda, K., Shimamoto, Y., Kimura, K., Nishio, I. & Masuyama, Y. (2001). Estriol improves membrane fluidity of erythrocytes by the nitric oxide-dependent mechanism: An electron paramagnetic resonance study. Hypertens Res 24(3), 263269.CrossRefGoogle ScholarPubMed
Unfer, T.C., Maurer, L.H., Kemerich, D.M., Figueiredo, C.G., Duarte, M.M.F., Gelain, D.P., Moreira, J.C.F. & Emanuelli, T. (2013). Non-genomic, direct modulatory effect of 17β-estradiol, progesterone and their synthetic derivatives on the activity of human erythrocyte CuZn superoxide dismutase. Free Radical Res 47(3), 219232.Google Scholar