Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T03:52:41.437Z Has data issue: false hasContentIssue false

Electronically Pure Single Chirality Semiconducting Single-Walled Carbon Nanotube for Large Scale Electronic Devices

Published online by Cambridge University Press:  12 January 2017

Huaping Li*
Affiliation:
Atom Nanoelectronics Inc. 440 Hindry Avenue, Unit E, Inglewood, California 90301USA
Get access

Abstract

Carbon nanotube thin film transistors (TFTs) with characteristics resembling those of TFTs constructed on amorphous silicon, low-temperature polycrystalline silicon and metal oxides were fabricated on (6,5) single chirality single-walled carbon nanotube (SWCNT) thin film deposited from electronically pure semiconducting (6,5) single chirality single-walled carbon nanotube (SWCNT) ink. This ink was extracted in industrial scale from raw SWCNTs produced using high pressure carbon monoxide conversion, and deposited on pretreated substrates to form uniform and consistent (6,5) HiPCO SWCNT thin film using solution process. The (6,5) HiPCO SWCNT thin films were characterized as pure semiconductor without metallic impurities showing classic nonlinear current-bias curves in Schottky-type diodes. Both N-type and P-type (6,5) HiPCO SWCNT TFTs were fabricated with femto Ampere off-current and ION/IOFF ratio of 108 by depositing SiNx and HfO2 dielectrics on the top of (6,5) HiPCO SWCNT thin films, respectively. The (6,5) HiPCO SWCNT inverter with voltage gain of 52 was also demonstrated by wire-bonding one P-type HiPCO SWCNT TFT to one N-type HiPCO SWCNT TFT.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refereneces

Cao, Q., Han, S.-J., Tersoff, J., Franklin, A. D., Zhu, Y., Zhang, Z., Tulevski, G. S., Tang, J. and Haensch, W., Science 350, 680 (2015).Google Scholar
Cao, Q., Kim, H.-S., Pimparker, N., Kulkarni, J. P., Wang, C. J., Shim, M., Roy, K., Alam, M. A., and Rogers, J. A., Nature 454, 495 (2008).Google Scholar
Almudever, C. G., and Rubio, A., Variability and Reliability of CNFET Technology: Impact of Manufacturing Imperfections. Microelectron. Reliab. 55, 358 (2015).Google Scholar
Li, H. P., Liu, H., Tang, Y., Guo, W., Zhou, L. L. and Smolinski, N., ACS Appl. Mater. & Interfaces 8, 20527 (2016).Google Scholar
Bronikowski, M. J., Willis, P. A., Colbert, D. T., Smith, K. A. and Smalley, R. E., J. Vac. Sci. Technol. A. 19, 1800 (2001).Google Scholar
Ghosh, S., Bachilo, S. and Weisman, R. B., Nature Nanotechnol. 5, 443 (2010).Google Scholar
Liu, H. P., Mishide, D., Tanaka, T. and Kataura, H., Nature Commun. 2, 309 (2011).Google Scholar
Yomogida, Y., Tanaka, T., Zhang, M., Yudasaka, M., Wei, X. and Kataura, H., Nature Commun. 7, 12056 (2016).Google Scholar
Subbaiyan, N. K., Cambré, S., Parra-Vasquez, A. N. G., Hároz, E. H., Doorn, S. K. and Duque, J. G., ACS Nano. 8, 1619 (2014).Google Scholar
O’Connell, M. J., Bachilo, S. M., Huffman, C. B., Moore, V. C., Strano, M. S., Haroz, E. H., Rialon, K. L., Boul, P. J., Noon, W. H., Kittrell, C., Ma, J. P., Hauge, R. H., Weisman, R. B., and Smalley, R. E., Science 297, 593 (2002).Google Scholar
Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E. and Weisman, R. B., Science 298, 2361 (2002).CrossRefGoogle Scholar
Bonhommeau, S., Deria, P., Glesner, M. G., Talaga, D., Najjar, S., Belin, C., Auneau, L., Trainini, S., Therien, M. J. and , V. J. Phys. Chem. C 117, 14840 (2013).Google Scholar
Takahashi, T., Takei, K., Gillies, A. G., Fearing, R. S. and Javey, A., Nano Lett. 11, 5408 (2011).Google Scholar
Li, H. P. and Zhou, L. L., Chem. Select 1, 3569 (2016).Google Scholar
Li, H. P., ECS J. Solid State Sci. Technol . 5, M93 (2016).CrossRefGoogle Scholar
Lustig, N. and Kanicki, J., J. Appl. Phys. 65, 3951 (1989).Google Scholar
Lambrinos, M. F., Valizadeh, R. and Colligon, J. S., J. Vac. Sci. Technol. B 16, 589 (1998).Google Scholar
Margańska, M., del Valle, M., Jhang, S. H., Strunk, C. and Grifoni, M., Phys. Rev. 83, 193407 (2011).Google Scholar
Powell, M. J., IEEE Trans Electron Dev. 36, 2753 (1989).Google Scholar
Cherenack, K. H., Kattamis, A. Z., Hekmatshoar, B., Sturm, J. C. and Wagner, S., IEEE Electron. Dev. Lett. 28, 1004 (2007).Google Scholar
Wager, J. F., Inf. Disp. 2, 26 (2014).Google Scholar
Wager, J. F., Inf. Disp. 32, 16 (2016).Google Scholar
Javey, A., Guo, J., Wang, Q., Lundstrom, M. and Dai, H., Nature 424, 654 (2003).Google Scholar
Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntrye, P., McEuen, P., Lundstrom, M. and Dai, H., Nature Mater. 1, 241 (2002).Google Scholar
Kimura, M., Yudasaka, I., Kanbe, S., Kobayashi, H., Kiguchi, H., Seki, S.-I., Miyashita, S., Shimoda, T., Ozawa, T., Kitawada, K., Nakazawa, T., Miyazawa, W. and Ohshima, H., IEEE Trans. Electron. Dev. 46, 2282 (1999).Google Scholar