Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T08:08:25.477Z Has data issue: false hasContentIssue false

Directed Assembly of Nanoelements Using Electrostatically Addressable Templates

Published online by Cambridge University Press:  26 February 2011

Xugang Xiong
Affiliation:
xiong@coe.neu.edu, Northeastern University, 467 Egan Center, 120 Forsyth Street, Boston, MA, 02115, United States, 617-373-8297
Prashanth Makaram
Affiliation:
pmakaram@coe.neu.edu
Kaveh Bakhtari
Affiliation:
k_bakhtari@yahoo.com
Sivasubramanian Somu
Affiliation:
ssomu@ECE.NEU.EDU
Ahmed Busnaina
Affiliation:
busnaina@coe.neu.edu
Jason Small
Affiliation:
small@coe.neu.edu
Nick Mcgruer
Affiliation:
mcgruer@ECE.NEU.EDU
Jingoo Park
Affiliation:
jppark@hanyang.ac.kr, Hanyang University, Korea, Republic of
Get access

Abstract

Directed assembly of nanoparticles and single wall carbon nanotubes (SWNTs) using electrostatically addressable templates has been demonstrated. Nanoparticles down to 50 nm are assembled on the Au micro and nanowires of the templates in a DC and AC electric fields. The nanoparticles can be assembled in monolayers and thicker layers. Single wall carbon nanotubes (SWNTs) are also assembled without alignment on Au wires using the nanotemplate. As the size of the template wires is reduced to nanoscale dimensions, an AC electric field proves to be more effective for nanoparticle assembly than a DC electric field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Resch, R., Bugacov, A., Baur, C., Koel, B. E., Madhukar, A., Requicha, A. A. G. and Will, P., Appl. Phys. A 67, 265 (1998).Google Scholar
2 Baur, C., Bugacov, A., Koel, B. E., Madhukar, A., Montoya, N., Ramachandran, T. R., Requicha, A. A. G., Resch, R. and Will, P., Nanotechnology 9, 360 (1998).Google Scholar
3 Limmer, S. J., Chou, T. P., Cao, G. Z., J. Mater. Sci. 39, 895 (2004).Google Scholar
4 Kumar, M. Senthil, Lee, S. H., Kim, T. Y., Kim, T. H., Song, S. M., Yang, J. W., Nahm, K. S., Suh, E. -K., Solid-State Electronics 47, 2075 (2003).Google Scholar
5 Zheng, L., Li, S., Brody, J. P., and Bruke, P. J., Langmuir 20, 8612 (2004).Google Scholar
6 Bhatt, K. H., Grego, S., and Velev, O. D., Langmuir 21, 6603 (2005).Google Scholar
7 Jones, T. B., Electromechanics of particles, (Cambridge University Press, Cambridge; New York, 1995).Google Scholar
8 Hughes, M. P., Nanotechology 11, 124 (2000).Google Scholar
9 Ramos, A., Morgan, H., Green, N. G., and Castellanos, A., J. Phys. D: Appl. Phys. 31, 2338 (1998).Google Scholar
10 Krupke, R., Hennrich, F., Kappes, M. M., and Löhneysen, H. v.. Nano Lett. 4, 1395 (2004)Google Scholar
11 Bakhtari, K., 2005 MRS Fall Meeting, Boston, MA, 2005 (unpublished)Google Scholar