Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T01:00:54.597Z Has data issue: false hasContentIssue false

Laddersiloxanes: Silsesquioxanes with Defined Ladder Structure

Published online by Cambridge University Press:  17 March 2011

Masafumi Unno*
Affiliation:
Gunma University, Kiryu, 376-8515, Japan
Get access

Abstract

A series of structurally-defined laddersiloxanes [1] are presented. Pentacyclic laddersiloxanes were prepared by a stepwise procedure from all-cis-tetraisopropylcyclotetrasiloxanetetraol. All-anti pentacyclic, tetracyclic, tricyclic, and bicyclic laddersiloxanes were obtained by oxidation from respecting all-anti pentacyclic ladder polysilane. Stereocontrolled approach using RS-disiloxanediol as an expanding unit enabled the synthesis of longer laddersiloxanes. Finally, methyl-substituted ladder polysilsesquioxane was obtained by the stepwise transformation from (MePhSiO) 4. The X-ray crystal structures, NMR and IR spectra, and thermal stability of these laddersiloxanes are summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.In this paper, we term ‘laddersiloxane’ for the silsesquioxanes with defined ladder structure.Google Scholar
2. Brown, J. F. Jr, Vogt, L. H. Jr, Katchman, A., Eustance, J. W., Kaiser, K. M., and Krantz, K. W., J. Am. Chem. Soc. 82, 61946195 (1960).Google Scholar
3.(a) Lee, E. -C. and Kimura, Y., Polym. J. 29, 678684 (1997).Google Scholar
(b) Lee, E. -C. and Kimura, Y., Polym. J. 30, 234242 (1998).Google Scholar
(c) Chen, W.-Y., Lin, Y., Pramoda, K. P., Ma, K. X., and Shung, T. S., J. Polym. Sci. B: Polym. Phys. 38, 138147 (2000).Google Scholar
(d) Hayashida, S. and Imamura, S., J. Polym. Sci. A: Polym. Chem. 33, 5562 (1995).Google Scholar
4.(a) Frye, C. L. and Klosowski, J. M., J. Am. Chem. Soc. 93, 45994601 (1971).Google Scholar
(b) Brook, M. A., Silicon in Organic, Organometallic, and Polymer Chemistry; John Willey & Sons: New York, 2000; p 322.Google Scholar
5. Kyushin, S., Miyazima, Y., and Matsumoto, H., Chem. Lett. 1420 (2000).Google Scholar
6. Unno, M., Takada, K., and Matsumoto, H., Chem. Lett. 489490 (1998).Google Scholar
7. Unno, M., Suto, A., Takada, K., and Matsumoto, H., Bull. Chem. Soc. Jpn. 73, 215220 (2000).Google Scholar
8. Unno, M., Takada, K., and Matsumoto, H., Chem. Lett. 242243 (2000).Google Scholar
9. Unno, M., Shamsul, B. A., Arai, M., Takada, K., Tanaka, R., and Matsumoto, H., Appl. Organomet. Chem. 13, 18 (1999).Google Scholar
10. Voronkov, M. G., Dolgov, B. N., and Dmitrieva, N. A., Doklady Akad. Nauk S. S. S. R.,, 84, 959961 (1952).Google Scholar
11. Unno, M., Suto, A., and Matsumoto, H., J. Am. Chem. Soc., 124, 15741575 (2002).Google Scholar
12. Helmer, B. J. and West, R. Organometallics 1, 1463 (1982).Google Scholar
13. Ishikawa, M. and Kumada, M., J. Organomet. Chem. 42, 325 (1972).Google Scholar
14. Saleh, I. and Weber, W. P., Organometallics, 2, 903 (1983) and references cited therein.Google Scholar
15. Unno, M., Tanaka, R., Tanaka, S., Takeuchi, T., Kyushin, S., and Matsumoto, H., Organometallics 24, 765768 (2005).Google Scholar
16. Unno, M., Matsumoto, T., and Matsumoto, H., J. Organomet. Chem., 692, 307312 (2007).Google Scholar
17. Harrod, J. F. and Pelletier, E., Organometallics 3, 1064 (1984)Google Scholar
18. Unno, M., Chang, S., and Matsumoto, H., Bull. Chem. Soc. Jpn., 78, 11051109 (2005).Google Scholar