Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T10:30:26.627Z Has data issue: false hasContentIssue false

Enhanced Band-Gap Luminescence in Strain-Symmetrized (Si)m(Ge)n Superlattices

Published online by Cambridge University Press:  25 February 2011

U. Menczigar
Affiliation:
Walter Schottky Institut, TU München, Am Coulombwall, D-8046 Garching, Germany
G. Abstreiter
Affiliation:
Walter Schottky Institut, TU München, Am Coulombwall, D-8046 Garching, Germany
H. Kibbel
Affiliation:
Daimler Benz AG, Forschungszentrum, Wilhelm Runge Str. 11, D-7800 Ulm, Germany
H. Presting
Affiliation:
Daimler Benz AG, Forschungszentrum, Wilhelm Runge Str. 11, D-7800 Ulm, Germany
E. Kasper
Affiliation:
Daimler Benz AG, Forschungszentrum, Wilhelm Runge Str. 11, D-7800 Ulm, Germany
Get access

Abstract

We report on band-gap luminescence in short period, strain symmetrized (Si)m(Ge)n superlattices grown on relaxed, step-graded Sil-xGex alloy buffer layers. The dislocation density in the superlattices, which were grown at 500°C using Sb as a surfactant, is reduced by 2-3 orders of magnitude compared with superlattices grown on thin, partly relaxed Sil-xGex buffer layers. Due to the improved quality of the superlattices, well defined band-gap luminescence could be observed which is for a (Si)6(Ge)4 superlattice strongly enhanced compared with a Si0.6Ge0.4 alloy reference sample. The measured band-gap energies compare well with theoretical predictions. To study the influence of interdiffusion of the Si- and Gelayers on the band-gap of the superlattices, the samples were annealed and studied with photoluminescence and Raman spectroscopy. An increasing band-gap and a decreasing luminescence efficiency was found with increasing intermixing of the layers. These experimental results are well described with an interdiffuision model of the layers in conjunction with an effective mass calculation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gnutzmann, U. and Clausecker, K., Appl. Phys. 3, 9 (1974).Google Scholar
2. Pearsall, P., Bevk, J., Feldman, L. C., Bonar, J. M., Maennaerts, J. P., Phys. Rev. Lett. 58, 729 (1986).Google Scholar
3. Turton, J. and Jaros, M., Mat. Sci. and Engineering B 7, 37 (1990) and references therein.Google Scholar
4. Schmid, U., Christensen, E., Alouani, M., and Cardona, M., Phys. Rev. B 43, 14597 (1991).Google Scholar
5. Tserbak, C., Polatoglou, H. M., and Theodorou, G., Phys. Rev. B, in press.Google Scholar
6. Kasper, H. Kibbel, Jorke, H., Brugger, H., Friess, E., and Abstreiter, G., Phys. Rev. B 38, 2599 (1988).CrossRefGoogle Scholar
7. Bastard, G., Wave mechanics applied to semiconductor heterostructures, (Les Editions de Physique, Paris, 1988).Google Scholar
8. Colombo, L., Resta, R., and Baroni, S., Phys. Rev. B 44 (1991) 5572 CrossRefGoogle Scholar
9. Walle, C. G. van de and Martin, R. M., Phys. Rev. B 34 (1986) 5621 CrossRefGoogle Scholar
10. Zachai, R., Eberl, K., Abstreiter, G., Kasper, E., and Kibbel, H., Phys. Rev. Lett. 64, 1055 (1990).CrossRefGoogle Scholar
11. Schmid, U, Christensen, N. E., Cardona, M., Phys. Rev. Lett. 65, 2610 (1990).Google Scholar
12. Goues, F. K. Le, Meyerson, B. S., and Morar, F. J., Phys. Rev. Lett. 66, 2903 (1991).Google Scholar
13. Fitzgerald, E. A., Xie, Y. H., Green, M. L., Brasen, D., Kortan, A. R., Michel, J., Mie, Y. J., andWeir, B. E., Appl. Phys. Lett. 59, 811 (1991).Google Scholar
14. Terashima, K., Tajima, M., and Tatsumi, T., Appl. Phys. Lett. 57 (1990) 1925 CrossRefGoogle Scholar
15. Spitzer, J., Thonke, K., Sauer, R., Kibbel, H., Herzog, H.-J., and Kasper, E., Appl. Phys. Lett. 60 (1992) 1729 Google Scholar
16. Menczigar, U., Brunner, J., Friess, E., Gail, M., Abstreiter, G., Kibbel, H., Presting, H., and Kasper, E., Thin Solid Films 222, 227 (1992) and references therein.Google Scholar
17. Fujita, K., Fukatsu, S., Yaguchi, H., Igarashi, T., Shiraki, Y., and Ito, R., Silicon Molecular Beam Epitaxy, edited by Bean, J. C., Parker, E. H. C., Iyer, S. S., Shiraki, Y., Kasper, E., and Wang, K. L. (Mater. Res. Soc. Proc. 220, Pittsburgh, PA, 1991).pp. 193197.Google Scholar
18. Presting, H., and Kibbel, H., Thin Solid Films 222, 215 (1992)Google Scholar
19. Menczigar, U., Abstreiter, G., Kibbel, H., Presting, H., Kasper, E., Olajos, J., Grimmeiss, H. G., Phys. Rev. B 47, 4099 (1993).Google Scholar
20. Engvall, J., Olajos, J., Grimmeiss, H. G., Kibbel, H., Kasper, E., and Presting, H., this volume.Google Scholar
21. Olajos, J, Engvall, J., Grimmeiss, H. G., Menczigar, U., Abstreiter, G., Kibbel, H., Kasper, E., and Presting, H., Phys. Rev. B 46, 12857 (1992).Google Scholar
22. Jager, W., Stenkamp, D., Ehrhart, P., Leifer, K., Sybertz, W., Kibbel, H., Presting, H., and Kasper, E., Thin Solid Films 222, 221 (1992).Google Scholar
23. Weber, J., and Alonso, M. I., Phys. Rev. B 40, 5683 (1989).Google Scholar
24. Weber, J., and Alonso, M. I., in Defect Control in Semiconductors, edited by Sumino, K., Elsevier Science Publisher B. V. (North Holland), 1453 (1990).Google Scholar
25. Noël, J. -P., Rowell, N. L., Houghton, D. C., and Perovic, D. D., Appl. Phys. Lett. 57, 1037 (1990).CrossRefGoogle Scholar
26. Schorer, R., Friess, E., Eberl, K., and Abstreiter, G., Phys. Rev. B 44, 1772 (1991).CrossRefGoogle Scholar
27. Menczigar, U., Abstreiter, G., Kibbel, H., Presting, H., Kasper, E., Olajos, J., Grimmeiss, H. G., Stenkamp, D., and Jäger, W., to be published.Google Scholar
28. , Renucci, Renucci, J. B., and Cardona, M., Proc. of the 2nd Int. Conf. on Light Scattering in Solids edited by Balkanski, M. (Flammarion, Paris, 1971), pp. 326.Google Scholar
29. Friess, E., Eberl, K., Menczigar, U., and Abstreiter, G., Solid State Commun. 73, 203 (1990).Google Scholar
30. Oueslati, M., Zouaghi, M., Pistol, M. E., Samuelson, L., Grimmeiss, H. G., and Balkanski, M., Phys. Rev. B 32, 8220 (1985).Google Scholar