Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T15:48:14.128Z Has data issue: false hasContentIssue false

IR and XRD Amorphous Synthesis Residue Showing Zeolitic Micropores

Published online by Cambridge University Press:  31 January 2011

Anthony S.T. Chiang
Affiliation:
stchiang@cc.ncu.edu.tw, National Central University, Chemical & Materials Eng., Chung-Li, Taiwan, Province of China
Sewn-Yi Fun
Affiliation:
943204059@cc.ncu.edu.tw, National Central University, Chemical & Materials Eng., CHung-Li, Taiwan, Province of China
Jan-Sen Wu
Affiliation:
953204043@cc.ncu.edu.tw, National Central University, Chemical & Materials Eng., CHung-Li, Taiwan, Province of China
Tseng-Chang Tsai
Affiliation:
tctsai@nuk.edu.tw, National University of Kaohsiung, Applied Chemistry, Kaohsiung, Taiwan, Province of China
Get access

Abstract

In the preparation of zeolite nanocrystals from the hydrothermal reaction of clear solution, the zeolite products are typically collected by high speed centrifugation. For Beta zeolite, the crystalline yield is often low, thus a good fraction of silicates reminds in the supernatant. These XRD amorphous materials turn out to be uniform nanoparticles that, after calcination, showed similar micropore structure as that of the collected beta zeolite nanocrystals. TPD measurements of hexane isomers further indicated that both the crystalline and the amorphous products were more selective toward the smaller hexane molecule.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Leu, L.J., Hou, L.Y., Kang, B.C., Li, C.P., Wu, S.T., and Wu, J.C., Appl. Catal. 69(1), 49 (1991).Google Scholar
[2] Martins, A., Silva, J.M., Ribeiro, F.R., and Ribeiro, M.F., Catalysis Lett. 109(1-2), 83 (2006).Google Scholar
[3] Barcia, P.S., Silva, J.A.C., and Rodrigues, A.E., Ind.Eng.Chem.Res. 45(12), 4316 (2006).Google Scholar
[4] Buskens, P.L., Martens, L.R., and Mathys, G.M.K., Wprld Patent 09503250 (1995).Google Scholar
[5] Camblor, M.A., Corma, A., Mifsud, A., Perez-Pariente, J., and Valencia, S., Stud.Surf.Sci.Catal. 105, 341 (1997).Google Scholar
[6] Schoeman, B.J., Babouchkina, E., Mintova, S., Valtchev, V.P., and Sterte, J., J. Porous Mater. 8(1), 13 (2001).Google Scholar
[7] Mintova, S., Valtchev, V., Onfroy, T., Marichal, C., Knozinger, H., and Bein, T., Micropor. Mesopor. Mater. 90(1-3), 237 (2006).Google Scholar
[8] Rimer, J.D., Lobo, R.F., and Vlachos, D.G., Langmuir 21(19), 8960 (2005).Google Scholar
[9] Hsu, C.Y., Chiang, A.S.T., Selvin, R., and Thompson, R.W., J.Phys.Chem.B 109(40), 18804 (2005).Google Scholar
[10] Wu, C.S., Liao, J.Y., Fang, S.Y., and Chiang, A., Adsorption, in press, DOI: 10.1007/s10450-009-9196-3 (2010).Google Scholar
[11] Choudhary, V.R. and Mantri, K., Langmuir 16(21), 8024 (2000).Google Scholar
[12] Perezpariente, J., Martens, J.A., and Jacobs, P.A., Appl. Catal. 31(1), 35 (1987).Google Scholar
[13] Makowski, W. and Majda, D., Thermochimica Acta 412(1-2), 131 (2004).Google Scholar