Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T14:07:46.668Z Has data issue: false hasContentIssue false

Study of Growth Kinetics of Ultra-Long Carbon Nanotube Arrays through Wall Number Statistical Investigation

Published online by Cambridge University Press:  31 January 2011

Xinwei Cui
Affiliation:
xinweic@ualberta.ca, University of Alberta, Chemical and Materials Engineering, Edmonton, Canada
Weifeng Wei
Affiliation:
weifengw@mit.edu, Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, Massachusetts, United States
Weixing Chen
Affiliation:
weixing.chen@ualberta.ca, University of Alberta, Chemical and Materials Engineering, Edmonton, Canada
Get access

Abstract

The unique properties of carbon nanotubes (CNTs) strongly depend on their structures. In this study, the growth kinetics of ultra-long multi-walled CNT (MWCNT) arrays by water-assisted chemical vapor deposition (WACVD) has been investigated based on the statistical studies of CNT wall number. It was found that the kinetics of MWCNT arrays in WACVD demonstrated a lengthening and thickening growth. In the linear lengthening stage, CNT wall number remains constant and catalysts preserve the activity; while in the thickening stage, CNTs thicken substantially through the gas phase-induced thickening process and catalysts start to deactivate. The effects of ethylene and hydrogen flow rates on the MWCNT array growth have also been studied. It was found that by changing ethylene flow rate, different linear lengthening stages corresponding to different CNT wall numbers could be obtained. These findings provide experimental solutions to fabrication MWCNT arrays with both selective heights and controllable wall numbers by WACVD.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hennrich, F., Chan, C., Moore, V., Rolandi, M. and O'Connell, M. J., in Carbon Nanotubes: Properties and Applications, edited by O'Connell, M. J. (CRC Press, Boca Raton, 2006), pp. 116.Google Scholar
2. Campidelli, S., Meneghetti, M., Prato, M., Small 3, 1672 (2007).Google Scholar
3. Yasuda, S., Futaba, D.N., Yamada, T., Satou, J., Shibuya, A., Takai, H., Arakawa, K., Yumura, M., Hata, K., ACS Nano 3, 4164 (2009).Google Scholar
4. Yamada, T., Namai, T., Hata, K., Futaba, D. N., Mizuno, K., Fan, J., Yudasaka, M., Yumura, M., Iijima, S., Nat. Nanotechnol. 1, 131 (2006).Google Scholar
5. Ci, L., Vajtai, R., Ajayan, P. M., J. Phys. Chem. C 111, 9077 (2007).Google Scholar
6. Mudimela, P. R., Nasibulin, A. G., Jiang, H., Susi, T., Chassaing, D., Kauppinen, E. I., J. Phys. Chem. C 113, 2212 (2009).Google Scholar
7. Futaba, D. N., Goto, J., Yasuda, S., Yamada, T., Yumura, M., Hata, K., J. Am. Chem. Soc. 131, 15992 (2009).Google Scholar
8. Lolli, G., Zhang, L., Balzano, L., Sakulchaicharoen, N., Tan, Y., Resasco, D. E., J. Phys. Chem. B 110, 2108 (2006).Google Scholar
9. Yasuda, S., Hiraoka, T., Futaba, D. N., Yamada, T., Yumura, M., Hata, K., Nano Lett. 9, 769 (2009).Google Scholar
10. Meshot, E. R., Plata, D. L., Tawfick, S., Zhang, Y., Verploegen, E. A., Hart, A. J., ACS Nano 3, 2477 (2009).Google Scholar
11. Patole, S. P., Alegaonkar, P. S., Lee, H. C., Yoo, J. B., Carbon 46, 1987 (2008).Google Scholar
12. Cui, X., Wei, W., Harrower, C., Chen, W., Carbon 47, 3441 (2009).Google Scholar
13. Yun, Y. H., Shanov, V., Tu, Y., Subramaniam, S., Schulz, M. J., J. Phys. Chem. B 110, 23920 (2006).Google Scholar
14. Futaba, D. N., Hata, K., Yamada, T., Mizuno, K., Yumura, M., Iijima, S., Phys. Rev. Lett. 95, 056104 (2005).10.1103/PhysRevLett.95.056104Google Scholar
15. Feng, X., Liu, K., Xie, X., Zhou, R., Zhang, L., Li, Q., Fan, S. Jiang, K., J. Phys. Chem. C 113, 9623 (2009).Google Scholar
16. Gohier, A., Ewels, C. P., Minea, T. M., Djouadi, M. A., Carbon 46, 1331 (2008).Google Scholar
17. Eres, G., Kinkhabwala, A. A., Cui, H., Geohegan, D. B., Puretzky, A. A., Lowndes, D. H., J. Phys. Chem. B 109, 16684 (2005).Google Scholar
18. Zhong, G.,; Iwasaki, T.,; Robertson, J.,; Kawarada, H., J. Phys. Chem. B 111, 1907 (2007).Google Scholar
19. Chakrabarti, S., Nagasaka, T., Yoshikawa, Y., Pan, L., Nakayama, Y., Jpn. J. Appl. Phys. 45, L720 (2006).Google Scholar