Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T06:56:52.094Z Has data issue: false hasContentIssue false

Solution-Processed High-Voltage Organic Thin Film Transistor

Published online by Cambridge University Press:  16 May 2017

Andy Shih*
Affiliation:
Electrical Engineering and Computer Science Department, Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA02141, U.S.A
Akintunde Ibitayo Akinwande
Affiliation:
Electrical Engineering and Computer Science Department, Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA02141, U.S.A
*
*(Email: ashih@mit.edu)
Get access

Abstract

A 6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) based high-voltage organic thin film transistor (HVOTFT) has been demonstrated via a low temperature (< 100°C) solution-processed fabrication method on borosilicate glass. High-voltage is an area not well developed in the organic transistor field and can be of benefit to various applications requiring such an operating range beyond that of conventional thin film transistors. Here, our HVOTFT exhibited a mobility μ of 0.005 cm2 V-1 s-1 and a breakdown voltage of VDS > 120 V, the latter being due a space-charge limiting device architecture in which the channel is partially gated. Non-saturating I-V characteristic behavior was observed. This is in contrast with our vacuum-deposited pentacene HVOTFTs which exhibited breakdown voltages of VDS > 400 V. TIPS-pentacene was grown via a drop-casting deposition, with its crystallinity and grain size deduced under XRD and SEM analysis. The HVOTFT was fabricated with a dielectric stack of a high-k Bi1.5Zn1Nb1.5O7 (BZN) and parylene-C.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, R., Jarrett, C. P., de Leeuw, D. M., and Matters, M., Synth. Met, 88, 3755 (1997).Google Scholar
Park, S. K., Jackson, T. N., Anthony, J. E., and Mourey, D. A., Appl. Phys. Lett., 91, 063514 (2007).CrossRefGoogle Scholar
Diao, Y., Shaw, L., Bao, Z. and Mannsfeld, S. C. B., Energy Environ. Sci., 7, 2145 (2014)Google Scholar
Sirringhaus, H., Adv. Mater, 17, 24112425 (2005).Google Scholar
Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kashara, A. Yumoto, , and Urabe, T., J. Soc. Inf. Display, 16 (1), 15-20 (2008).CrossRefGoogle Scholar
Schwartz, G., Tee, B. C.-K., Mei, J., Appleton, A. L., Kim, D. H., Wang, H., and Bao, Z., Nat. Commun., 4, 1859 (2013).Google Scholar
Tinivella, R., Camarchia, V., Pirola, M., Shen, S., and Ghione, G., Org. Electron., 12 (8), 1328-1335 (2011).CrossRefGoogle Scholar
Zschieschang, U., Yamamoto, T., Takimiya, K., Kuwabara, H., Ikeda, M., Sekitani, T., Someya, T., and Klauk, H., Adv. Mat., 23, 654658 (2011).CrossRefGoogle Scholar
Liao, and Yan, F., Polym. Rev. s, 53 (3), 352-406 (2013).Google Scholar
Karim, K.S., Servati, P., and Nathan, A., Microelectron. J., 35, 311315 (2004).Google Scholar
Unagami, T. and Kogure, O., IEEE Trans. Electron Devices, 35 (3), 314-319 (1988).Google Scholar
Martin, R. A., Da Costa, V. M., Hack, M., and Shaw, J. G., IEEE Trans. Electron Devices, 40 (3), 634-644 (1993).CrossRefGoogle Scholar
Ito, M., Miyazaki, C., Ishizaki, M., Kon, M., Ikeda, N., Okubo, T., Matsubara, R., Hatta, K., Ugajin, Y., and Sekine, N., J. Non-Cryst. Solids, 354, 27772782 (2008).Google Scholar
Kato, U., Sekitani, T., Takamiya, M., Doi, M., Asaka, K., Sakurai, T., Someya, T., IEEE Trans. Electron Devices, 54(2), 202209 (2007).CrossRefGoogle Scholar
Zhao, W. and Law, J., Med. Phys., 25 (4), 539-549 (1998).Google Scholar
Marmon, P., Battaglini, N., Lang, P., Horowitz, G., Hwang, J., Kahn, A., Amato, C., Calas, P., Org. Electron., 9, 419424 (2008).CrossRefGoogle Scholar
Smith, M. A., Gowers, R. P., Shih, A., and Akinwande, A. I., IEEE Trans. Electron Devices, 62 (12), 42134219, 2015.Google Scholar
Wang, L., Fine, D., Basu, D., and Dodabalapur, A., J. Appl. Phys., 101 (5), 054515-1-8 (2007).Google Scholar
Choi, Y., Kim, I.-D., Tuller, H. L. and Akinwande, A. I., IEEE Trans. Electron Devices, 52 (12), 2819-2824 (2005).Google Scholar