Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T23:06:00.270Z Has data issue: false hasContentIssue false

50nm Gate-Length Hydrogen Terminated Diamond Field Effect Transistors – Characterization and Inspection of Operation.

Published online by Cambridge University Press:  09 March 2011

David A. J. Moran
Affiliation:
Dept. of Electronics and Electrical Engineering, University of Glasgow, Glasgow, G12 8LT, U.K
Donald A. MacLaren
Affiliation:
Dept. of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, U.K
Samuele Porro
Affiliation:
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, U.K.
Richard Hill
Affiliation:
Dept. of Electronics and Electrical Engineering, University of Glasgow, Glasgow, G12 8LT, U.K
Helen McLelland
Affiliation:
Dept. of Electronics and Electrical Engineering, University of Glasgow, Glasgow, G12 8LT, U.K
Phillip John
Affiliation:
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, U.K.
John Wilson
Affiliation:
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, U.K.
Get access

Abstract

Hydrogen terminated diamond field effect transistors (FET) of 50nm gate length have been fabricated, their DC operation characterised and their physical and chemical structure inspected by Transmission Electron Microscopy (TEM) and Electron Energy Loss Spectroscopy (EELS). DC characterisation of devices demonstrated pinch-off of the source-drain current can be maintained by the 50nm gate under low bias conditions. At larger bias, off-state output conductance increases, demonstrating most likely the onset of short-channel effects at this reduced gate length.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ueda, K., Kasu, M., Yamauchi, Y., Makimoto, T., Schwitters, M., Twitchen, D. J., Scarsbrook, G. A., and Coe, S. E., Electron Device Letters, IEEE, 27, 7 (2006).10.1109/LED.2006.876325Google Scholar
[2] Hirama, K., Takayanagi, H., Yamauchi, S., Jingu, Y., Umezawa, H., Kawarada, H., Electron Devices Meeting (IEEE Washington DC 2007), pp 873876 Google Scholar
[3] Aleksov, A., Denisenko, A., Spitzberg, U., Jenkins, T., Ebert, W., Kohn, E., Diamond and Related Materials 11, 382 (2002).Google Scholar
[4] Foord, J., Laua, C., Hiramatsub, M., Jackman, R., Nebeld, C., Bergonzoe, P., Diamond and Related Materials 11, 856 (2002).Google Scholar
[5] Looi, H. J., Pang, L. Y. S., Molloy, A. B., Jones, F., Foord, J. S., Jackman, R. B., Diamond and Related Materials 7, 550 (1998).Google Scholar
[6] Kasu, Makoto, Ueda, Kenji, Kageshima, Hiroyuki, Yamauchi, Yoshiharu, Diamond and Related Materials 17, 741 (2008).10.1016/j.diamond.2007.12.022Google Scholar
[7] Dollfus, P., Hesto, P., Solod-State Electronics 36, 5, 711 (1993).Google Scholar
[8] Maier, F., Riedel, M., Mantel, B., Ristein, J., and Ley, L., Phys. Rev. Lett. 85, 3472 (2000).Google Scholar
[9] Chakrapani, V., Angus, J. C., Anderson, A. B., Wolter, S. D., Stoner, B. R., and Sumanasekera, G. U., Science 318, 1424 (2007)Google Scholar
[10] Chen, Wei, Qi, Dongchen, Gao, Xingyu, and Shen Wee, Andrew Thye, Prog. Surf. Sci. 84, 279 (2009)Google Scholar
[11] Electron energy loss spectroscopy in the electron microscope (2nd Ed.), Edgerton, R.F., Plenum Press, New York, 1996.Google Scholar
[12] Digital Micrograph software, http://www.gatan.com Google Scholar
[13] Avalos-Borja, M., Hirata, G.A., Contreras, O., Ning, X.G., Duarte-Moller, A., Barna, A., Diamond and Related Materials 5, 1249 (1996)Google Scholar
[14] De Barros, M. I., Serin, V., Vandenbulcke, L., Botton, G., Andreazza, P., Phaneuf, M. W., Diamond and Related Materials 11, 1544 (2002)Google Scholar