Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T11:19:58.538Z Has data issue: false hasContentIssue false

In-situ early stage electromigration study in Al line using synchrotron polychromatic X-ray microdiffraction

Published online by Cambridge University Press:  01 February 2011

Kai Chen
Affiliation:
kchen@lbl.gov, University of California, Los Angeles, Materials Science and Engineering, 6532 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA, 90095, United States
N. Tamura
Affiliation:
ntamura@lbl.gov, Lawrence Berkeley National Laboratory, Advanced Light Source, 1 Cyclotron Road, Berkeley, CA, 94720, United States
K. N. Tu
Affiliation:
kntu@ucla.edu, UCLA, Department of Materials Science and Engineering, Los Angeles, CA, 90095, United States
Get access

Abstract

Electromigration is a phenomenon that has attracted much attention in the semiconductor industry because of its deleterious effects on electronic devices (such as interconnects) as they become smaller and current density passing through them increases. However, the effect of the electric current on the microstructure of interconnect lines during the very early stage of electromigration is not well documented. In the present report, we used synchrotron radiation based polychromatic X-ray microdiffraction for the in-situ study of the electromigration induced plasticity effects on individual grains of an Al (Cu) interconnect test structure. Dislocation slips which are activated by the electric current stressing are analyzed by the shape change of the diffraction peaks. The study shows polygonization of the grains due to the rearrangement of geometrically necessary dislocations (GND) in the direction of the current. Consequences of these findings are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blech, I. A., J. Appl. Phys. 47, 1203 (1976)Google Scholar
2. Tu, K. N., J. Appl. Phys. 94, 5451 (2003)Google Scholar
3. Vaidya, S., and Sinda, A. K., Thin Solid Films 75, 253 (1981)Google Scholar
4. Ho, P. S., and Kwok, T., Rep. Prog. Phys. 52, 301 (1989)Google Scholar
5. Korhonen, M. A, Borgesen, P., Tu, K. N., and Li, C., J. Appl. Phys. 73, 3790 (1993)Google Scholar
6. Gan, H., Tu, K. N., J. Appl. Phys. 97, 063517 (2005)Google Scholar
7. Hignette, O., Cloetens, P., Rostaing, G., Bernard, P., and Morawe, C., Review of Scientific Instruments 76: Art. No. 063709 (2005)Google Scholar
8. Liu, W. J., Ice, G. E., Tischler, J. Z., Khounsary, A., Liu, C., Assoufid, L., and Macrander, A. T., Rev. Sci. Instrum. 76: Art. No. 113701 (2005)Google Scholar
9. Wang, P. C., Cargill, G. S. III, Noynan, I. C., and Hu, C. K., Appl. Phys. Lett. 72, 1296 (1998)Google Scholar
10. Valek, B. C., Bravman, J. C., Tamura, N., MacDowell, A. A., Celestre, R. S., Padmore, H. A., Spolenak, R., Brown, W. L., Batterman, B. W., and Patel, J. R., Appl. Phys. Lett. 81, 4168 (2002)Google Scholar
11. Tamura, N., Padmore, H. A, and Patel, J. R., Mat. Sci. Eng. A, 399, 92 (2005)Google Scholar
12. Valek, B. C., Tamura, N., Spolenak, R., Caldwell, W. A, MacDowell, A. A., Celestre, R. S., Padmore, H. A., Bravman, J. C., Batterman, B. W., Nix, W. D., and Patel, J. R., J. Appl. Phys. 94, 3757 (2003)Google Scholar
13. Budiman, A. S., Tamura, N., Valek, B. C., Gadre, K., Maiz, J., Spolenak, R., Patel, J. R., and Nix, W. D., Mater. Res. Soc. Symp. Proc. 914 (2006)Google Scholar
14. Barabash, R. I., Ice, G. E., Tamura, N., Valek, B. C., Bravman, J. C., Spolenak, R., and Patel, J. R., J. Appl. Phys. 93, 5701 (2003)Google Scholar
15. Budiman, A. S., Nix, W. D., Tamura, N., Valek, B. C., Gadre, K., Maiz, J., Spolenak, R., Patel, J. R., Appl. Phys. Lett. 88, 233515 (2006)Google Scholar
16. Tamura, N., MacDowell, A. A., Spolenak, R., Valek, B. C., Bravman, J. C., Brown, W. L., Celestre, R. S., Padmore, H. A., Batterman, B. W. and Patel, J. R., J. of Synchrotron Radiat. 10 (2003) 137143.Google Scholar
17. Tamura, N., Spolenak, R., Valek, B. C., Manceau, A., Chang, M. Meier, Celestre, R. S., MacDowell, A. A., Padmore, H. A., and Patel, J. R., Rev. Sci. Instrum. 73, 1369 (2002)Google Scholar